Cargando…
Indexing Multivariate Mobile Data through Spatio-Temporal Event Detection and Clustering
Mobile and wearable devices are capable of quantifying user behaviors based on their contextual sensor data. However, few indexing and annotation mechanisms are available, due to difficulties inherent in raw multivariate data types and the relative sparsity of sensor data. These issues have slowed t...
Autores principales: | Rawassizadeh, Reza, Dobbins, Chelsea, Akbari, Mohammad, Pazzani, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6387349/ https://www.ncbi.nlm.nih.gov/pubmed/30678263 http://dx.doi.org/10.3390/s19030448 |
Ejemplares similares
-
Multivariate Kalman filtering for spatio-temporal processes
por: Ferreira, Guillermo, et al.
Publicado: (2022) -
Multivariate Modeling for Spatio-Temporal Radon Flux Predictions
por: De Iaco, Sandra, et al.
Publicado: (2023) -
Towards Inertial Sensor Based Mobile Gait Analysis: Event-Detection and Spatio-Temporal Parameters
por: Teufl, Wolfgang, et al.
Publicado: (2018) -
An event-oriented database of meteorological droughts in Europe based on spatio-temporal clustering
por: Cammalleri, Carmelo, et al.
Publicado: (2023) -
Event Detection using Twitter: A Spatio-Temporal Approach
por: Cheng, Tao, et al.
Publicado: (2014)