Cargando…
Fast, Efficient, and Versatile Synthesis of 6-amino-5-carboxamidouracils as Precursors for 8-Substituted Xanthines
Substituted xanthine derivatives are important bioactive molecules. Herein we report on a new, practical synthesis of 6-amino-5-carboxamidouracils, the main building blocks for the preparation of 8-substituted xanthines, by condensation of 5,6-diaminouracil derivatives and various carboxylic acids u...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6387921/ https://www.ncbi.nlm.nih.gov/pubmed/30834241 http://dx.doi.org/10.3389/fchem.2019.00056 |
Sumario: | Substituted xanthine derivatives are important bioactive molecules. Herein we report on a new, practical synthesis of 6-amino-5-carboxamidouracils, the main building blocks for the preparation of 8-substituted xanthines, by condensation of 5,6-diaminouracil derivatives and various carboxylic acids using the recently developed non-hazardous coupling reagent COMU (1-[(1-(cyano-2-ethoxy-2-oxoethylideneaminooxy)dimethylaminomorpholinomethylene)]methanaminium hexafluorophosphate). Optimized reaction conditions led to the precipitation of pure products after only 5 to 10 min of reaction time. The method tolerates a variety of substituted 5,6-diaminouracil and carboxylic acid derivatives as starting compounds resulting in most cases in more than 80% isolated yield. Regioselectivity of the reaction yielding only the 5-carboxamido-, but not the 6-carboxamidouracil derivatives, was unambiguously confirmed by single X-ray crystallography and multidimensional NMR experiments. The described method represents a convenient, fast access to direct precursors of 8-substituted xanthines under mild conditions without the necessity of hazardous coupling or chlorinating reagents. |
---|