Cargando…
Heterodimerization of UNC-13/RIM regulates synaptic vesicle release probability but not priming in C. elegans
UNC-13 proteins play an essential role in synaptic transmission by recruiting synaptic vesicles (SVs) to become available for release, which is termed SV priming. Here we show that the C2A domain of UNC-13L, like the corresponding domain in mammalian Munc13-1, displays two conserved binding modes: f...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6389284/ https://www.ncbi.nlm.nih.gov/pubmed/30802206 http://dx.doi.org/10.7554/eLife.40585 |
_version_ | 1783397930885971968 |
---|---|
author | Liu, Haowen Li, Lei Nedelcu, Daniel Hall, Qi Zhou, Lijun Wang, Wei Yu, Yi Kaplan, Joshua M Hu, Zhitao |
author_facet | Liu, Haowen Li, Lei Nedelcu, Daniel Hall, Qi Zhou, Lijun Wang, Wei Yu, Yi Kaplan, Joshua M Hu, Zhitao |
author_sort | Liu, Haowen |
collection | PubMed |
description | UNC-13 proteins play an essential role in synaptic transmission by recruiting synaptic vesicles (SVs) to become available for release, which is termed SV priming. Here we show that the C2A domain of UNC-13L, like the corresponding domain in mammalian Munc13-1, displays two conserved binding modes: forming C2A/C2A homodimers, or forming a heterodimer with the zinc finger domain of UNC-10/RIM (C2A/RIM). Functional analysis revealed that UNC-13L’s C2A promotes synaptic transmission by regulating a post-priming process. Stimulus-evoked release but not SV priming, was impaired in unc-10 mutants deficient for C2A/RIM heterodimerization, leading to decreased release probability. Disrupting C2A/C2A homodimerization in UNC-13L-rescued animals had no effect on synaptic transmission, but fully restored the evoked release and the release probability of unc-10/RIM mutants deficient for C2A/RIM heterodimerization. Thus, our results support the model that RIM binding C2A releases UNC-13L from an autoinhibitory homodimeric complex to become fusion-competent by functioning as a switch only. |
format | Online Article Text |
id | pubmed-6389284 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-63892842019-02-27 Heterodimerization of UNC-13/RIM regulates synaptic vesicle release probability but not priming in C. elegans Liu, Haowen Li, Lei Nedelcu, Daniel Hall, Qi Zhou, Lijun Wang, Wei Yu, Yi Kaplan, Joshua M Hu, Zhitao eLife Neuroscience UNC-13 proteins play an essential role in synaptic transmission by recruiting synaptic vesicles (SVs) to become available for release, which is termed SV priming. Here we show that the C2A domain of UNC-13L, like the corresponding domain in mammalian Munc13-1, displays two conserved binding modes: forming C2A/C2A homodimers, or forming a heterodimer with the zinc finger domain of UNC-10/RIM (C2A/RIM). Functional analysis revealed that UNC-13L’s C2A promotes synaptic transmission by regulating a post-priming process. Stimulus-evoked release but not SV priming, was impaired in unc-10 mutants deficient for C2A/RIM heterodimerization, leading to decreased release probability. Disrupting C2A/C2A homodimerization in UNC-13L-rescued animals had no effect on synaptic transmission, but fully restored the evoked release and the release probability of unc-10/RIM mutants deficient for C2A/RIM heterodimerization. Thus, our results support the model that RIM binding C2A releases UNC-13L from an autoinhibitory homodimeric complex to become fusion-competent by functioning as a switch only. eLife Sciences Publications, Ltd 2019-02-25 /pmc/articles/PMC6389284/ /pubmed/30802206 http://dx.doi.org/10.7554/eLife.40585 Text en © 2019, Liu et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Neuroscience Liu, Haowen Li, Lei Nedelcu, Daniel Hall, Qi Zhou, Lijun Wang, Wei Yu, Yi Kaplan, Joshua M Hu, Zhitao Heterodimerization of UNC-13/RIM regulates synaptic vesicle release probability but not priming in C. elegans |
title | Heterodimerization of UNC-13/RIM regulates synaptic vesicle release probability but not priming in C. elegans |
title_full | Heterodimerization of UNC-13/RIM regulates synaptic vesicle release probability but not priming in C. elegans |
title_fullStr | Heterodimerization of UNC-13/RIM regulates synaptic vesicle release probability but not priming in C. elegans |
title_full_unstemmed | Heterodimerization of UNC-13/RIM regulates synaptic vesicle release probability but not priming in C. elegans |
title_short | Heterodimerization of UNC-13/RIM regulates synaptic vesicle release probability but not priming in C. elegans |
title_sort | heterodimerization of unc-13/rim regulates synaptic vesicle release probability but not priming in c. elegans |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6389284/ https://www.ncbi.nlm.nih.gov/pubmed/30802206 http://dx.doi.org/10.7554/eLife.40585 |
work_keys_str_mv | AT liuhaowen heterodimerizationofunc13rimregulatessynapticvesiclereleaseprobabilitybutnotprimingincelegans AT lilei heterodimerizationofunc13rimregulatessynapticvesiclereleaseprobabilitybutnotprimingincelegans AT nedelcudaniel heterodimerizationofunc13rimregulatessynapticvesiclereleaseprobabilitybutnotprimingincelegans AT hallqi heterodimerizationofunc13rimregulatessynapticvesiclereleaseprobabilitybutnotprimingincelegans AT zhoulijun heterodimerizationofunc13rimregulatessynapticvesiclereleaseprobabilitybutnotprimingincelegans AT wangwei heterodimerizationofunc13rimregulatessynapticvesiclereleaseprobabilitybutnotprimingincelegans AT yuyi heterodimerizationofunc13rimregulatessynapticvesiclereleaseprobabilitybutnotprimingincelegans AT kaplanjoshuam heterodimerizationofunc13rimregulatessynapticvesiclereleaseprobabilitybutnotprimingincelegans AT huzhitao heterodimerizationofunc13rimregulatessynapticvesiclereleaseprobabilitybutnotprimingincelegans |