Cargando…

A molecular mechanism for transthyretin amyloidogenesis

Human transthyretin (TTR) is implicated in several fatal forms of amyloidosis. Many mutations of TTR have been identified; most of these are pathogenic, but some offer protective effects. The molecular basis underlying the vastly different fibrillation behaviours of these TTR mutants is poorly under...

Descripción completa

Detalles Bibliográficos
Autores principales: Yee, Ai Woon, Aldeghi, Matteo, Blakeley, Matthew P., Ostermann, Andreas, Mas, Philippe J., Moulin, Martine, de Sanctis, Daniele, Bowler, Matthew W., Mueller-Dieckmann, Christoph, Mitchell, Edward P., Haertlein, Michael, de Groot, Bert L., Boeri Erba, Elisabetta, Forsyth, V. Trevor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390107/
https://www.ncbi.nlm.nih.gov/pubmed/30804345
http://dx.doi.org/10.1038/s41467-019-08609-z
_version_ 1783398074809319424
author Yee, Ai Woon
Aldeghi, Matteo
Blakeley, Matthew P.
Ostermann, Andreas
Mas, Philippe J.
Moulin, Martine
de Sanctis, Daniele
Bowler, Matthew W.
Mueller-Dieckmann, Christoph
Mitchell, Edward P.
Haertlein, Michael
de Groot, Bert L.
Boeri Erba, Elisabetta
Forsyth, V. Trevor
author_facet Yee, Ai Woon
Aldeghi, Matteo
Blakeley, Matthew P.
Ostermann, Andreas
Mas, Philippe J.
Moulin, Martine
de Sanctis, Daniele
Bowler, Matthew W.
Mueller-Dieckmann, Christoph
Mitchell, Edward P.
Haertlein, Michael
de Groot, Bert L.
Boeri Erba, Elisabetta
Forsyth, V. Trevor
author_sort Yee, Ai Woon
collection PubMed
description Human transthyretin (TTR) is implicated in several fatal forms of amyloidosis. Many mutations of TTR have been identified; most of these are pathogenic, but some offer protective effects. The molecular basis underlying the vastly different fibrillation behaviours of these TTR mutants is poorly understood. Here, on the basis of neutron crystallography, native mass spectrometry and modelling studies, we propose a mechanism whereby TTR can form amyloid fibrils via a parallel equilibrium of partially unfolded species that proceeds in favour of the amyloidogenic forms of TTR. It is suggested that unfolding events within the TTR monomer originate at the C-D loop of the protein, and that destabilising mutations in this region enhance the rate of TTR fibrillation. Furthermore, it is proposed that the binding of small molecule drugs to TTR stabilises non-amyloidogenic states of TTR in a manner similar to that occurring for the protective mutants of the protein.
format Online
Article
Text
id pubmed-6390107
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-63901072019-02-27 A molecular mechanism for transthyretin amyloidogenesis Yee, Ai Woon Aldeghi, Matteo Blakeley, Matthew P. Ostermann, Andreas Mas, Philippe J. Moulin, Martine de Sanctis, Daniele Bowler, Matthew W. Mueller-Dieckmann, Christoph Mitchell, Edward P. Haertlein, Michael de Groot, Bert L. Boeri Erba, Elisabetta Forsyth, V. Trevor Nat Commun Article Human transthyretin (TTR) is implicated in several fatal forms of amyloidosis. Many mutations of TTR have been identified; most of these are pathogenic, but some offer protective effects. The molecular basis underlying the vastly different fibrillation behaviours of these TTR mutants is poorly understood. Here, on the basis of neutron crystallography, native mass spectrometry and modelling studies, we propose a mechanism whereby TTR can form amyloid fibrils via a parallel equilibrium of partially unfolded species that proceeds in favour of the amyloidogenic forms of TTR. It is suggested that unfolding events within the TTR monomer originate at the C-D loop of the protein, and that destabilising mutations in this region enhance the rate of TTR fibrillation. Furthermore, it is proposed that the binding of small molecule drugs to TTR stabilises non-amyloidogenic states of TTR in a manner similar to that occurring for the protective mutants of the protein. Nature Publishing Group UK 2019-02-25 /pmc/articles/PMC6390107/ /pubmed/30804345 http://dx.doi.org/10.1038/s41467-019-08609-z Text en © Crown 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Yee, Ai Woon
Aldeghi, Matteo
Blakeley, Matthew P.
Ostermann, Andreas
Mas, Philippe J.
Moulin, Martine
de Sanctis, Daniele
Bowler, Matthew W.
Mueller-Dieckmann, Christoph
Mitchell, Edward P.
Haertlein, Michael
de Groot, Bert L.
Boeri Erba, Elisabetta
Forsyth, V. Trevor
A molecular mechanism for transthyretin amyloidogenesis
title A molecular mechanism for transthyretin amyloidogenesis
title_full A molecular mechanism for transthyretin amyloidogenesis
title_fullStr A molecular mechanism for transthyretin amyloidogenesis
title_full_unstemmed A molecular mechanism for transthyretin amyloidogenesis
title_short A molecular mechanism for transthyretin amyloidogenesis
title_sort molecular mechanism for transthyretin amyloidogenesis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390107/
https://www.ncbi.nlm.nih.gov/pubmed/30804345
http://dx.doi.org/10.1038/s41467-019-08609-z
work_keys_str_mv AT yeeaiwoon amolecularmechanismfortransthyretinamyloidogenesis
AT aldeghimatteo amolecularmechanismfortransthyretinamyloidogenesis
AT blakeleymatthewp amolecularmechanismfortransthyretinamyloidogenesis
AT ostermannandreas amolecularmechanismfortransthyretinamyloidogenesis
AT masphilippej amolecularmechanismfortransthyretinamyloidogenesis
AT moulinmartine amolecularmechanismfortransthyretinamyloidogenesis
AT desanctisdaniele amolecularmechanismfortransthyretinamyloidogenesis
AT bowlermattheww amolecularmechanismfortransthyretinamyloidogenesis
AT muellerdieckmannchristoph amolecularmechanismfortransthyretinamyloidogenesis
AT mitchelledwardp amolecularmechanismfortransthyretinamyloidogenesis
AT haertleinmichael amolecularmechanismfortransthyretinamyloidogenesis
AT degrootbertl amolecularmechanismfortransthyretinamyloidogenesis
AT boerierbaelisabetta amolecularmechanismfortransthyretinamyloidogenesis
AT forsythvtrevor amolecularmechanismfortransthyretinamyloidogenesis
AT yeeaiwoon molecularmechanismfortransthyretinamyloidogenesis
AT aldeghimatteo molecularmechanismfortransthyretinamyloidogenesis
AT blakeleymatthewp molecularmechanismfortransthyretinamyloidogenesis
AT ostermannandreas molecularmechanismfortransthyretinamyloidogenesis
AT masphilippej molecularmechanismfortransthyretinamyloidogenesis
AT moulinmartine molecularmechanismfortransthyretinamyloidogenesis
AT desanctisdaniele molecularmechanismfortransthyretinamyloidogenesis
AT bowlermattheww molecularmechanismfortransthyretinamyloidogenesis
AT muellerdieckmannchristoph molecularmechanismfortransthyretinamyloidogenesis
AT mitchelledwardp molecularmechanismfortransthyretinamyloidogenesis
AT haertleinmichael molecularmechanismfortransthyretinamyloidogenesis
AT degrootbertl molecularmechanismfortransthyretinamyloidogenesis
AT boerierbaelisabetta molecularmechanismfortransthyretinamyloidogenesis
AT forsythvtrevor molecularmechanismfortransthyretinamyloidogenesis