Cargando…

Rapid detection of colistin resistance protein MCR-1 by LC–MS/MS

BACKGROUND: Colistin (polymyxin E) and polymixin B are important bactericidal antibiotics used in the treatment of serious infections caused by multi-drug resistant Gram-negative organisms. Transferrable plasmid-mediated colistin resistance, conferred by the product of the mcr-1 gene, has emerged as...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Honghui, Chen, Yong, Strich, Jeffrey R., Drake, Steven K., Youn, Jung-Ho, Rosenberg, Avi Z., Gucek, Marjan, McGann, Patrick T., Suffredini, Anthony F., Dekker, John P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390366/
https://www.ncbi.nlm.nih.gov/pubmed/30890899
http://dx.doi.org/10.1186/s12014-019-9228-2
Descripción
Sumario:BACKGROUND: Colistin (polymyxin E) and polymixin B are important bactericidal antibiotics used in the treatment of serious infections caused by multi-drug resistant Gram-negative organisms. Transferrable plasmid-mediated colistin resistance, conferred by the product of the mcr-1 gene, has emerged as a global healthcare threat. Consequently, the rapid detection of the MCR-1 protein in clinical bacterial isolates has become increasingly important. We used a genoproteomic approach to identify unique peptides of the MCR-1 protein that could be detected rapidly by liquid chromatography tandem mass spectrometry (LC–MS/MS). METHODS: MCR-1 tryptic peptides that were efficiently ionized and readily detectable were characterized in a set of mcr-1-containing isolates with triple quadrupole LC–MS. Three optimal peptides were selected for the development of a rapid multiple reaction monitoring LC–MS/MS assay for the MCR-1 protein. To investigate the feasibility of rapid detection of the MCR-1 protein in bacterial isolates using this assay, a blinded 99-sample test set was built that included three additional mcr-1-containing clinical isolates tested in triplicate (9 samples) and 90 negative control isolates. RESULTS: All of the mcr-1-containing isolates in the test set were accurately identified with no false positive detections by three independent, blinded operators, yielding an overall performance of 100% sensitivity and specificity for multiple operators. Among the three peptides tested in this study, the best performing was DTFPQLAK. The isolate-to-result time for the assay as implemented is less than 90 min. CONCLUSIONS: This work demonstrates the feasibility of rapid detection of the MCR-1 protein in bacterial isolates by LC–MS/MS. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12014-019-9228-2) contains supplementary material, which is available to authorized users.