Cargando…
Role of smooth muscle cell p53 in pulmonary arterial hypertension
Pulmonary arterial hypertension (PAH) is characterized by remodeling and narrowing of the pulmonary arteries, which lead to elevation of right ventricular pressure, heart failure, and death. Proliferation of pulmonary artery smooth muscle cells (PASMCs) is thought to be central to the pathogenesis o...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6391010/ https://www.ncbi.nlm.nih.gov/pubmed/30807606 http://dx.doi.org/10.1371/journal.pone.0212889 |
_version_ | 1783398241292779520 |
---|---|
author | Wakasugi, Takayuki Shimizu, Ippei Yoshida, Yohko Hayashi, Yuka Ikegami, Ryutaro Suda, Masayoshi Katsuumi, Goro Nakao, Masaaki Hoyano, Makoto Kashimura, Takeshi Nakamura, Kazufumi Ito, Hiroshi Nojiri, Takashi Soga, Tomoyoshi Minamino, Tohru |
author_facet | Wakasugi, Takayuki Shimizu, Ippei Yoshida, Yohko Hayashi, Yuka Ikegami, Ryutaro Suda, Masayoshi Katsuumi, Goro Nakao, Masaaki Hoyano, Makoto Kashimura, Takeshi Nakamura, Kazufumi Ito, Hiroshi Nojiri, Takashi Soga, Tomoyoshi Minamino, Tohru |
author_sort | Wakasugi, Takayuki |
collection | PubMed |
description | Pulmonary arterial hypertension (PAH) is characterized by remodeling and narrowing of the pulmonary arteries, which lead to elevation of right ventricular pressure, heart failure, and death. Proliferation of pulmonary artery smooth muscle cells (PASMCs) is thought to be central to the pathogenesis of PAH, although the underlying mechanisms are still being explored. The protein p53 is involved in cell cycle coordination, DNA repair, apoptosis, and cellular senescence, but its role in pulmonary hypertension (PH) is not fully known. We developed a mouse model of hypoxia-induced pulmonary hypertension (PH) and found significant reduction of p53 expression in the lungs. Our in vitro experiments with metabolomic analyses and the Seahorse XF extracellular flux analyzer indicated that suppression of p53 expression in PASMCs led to upregulation of glycolysis and downregulation of mitochondrial respiration, suggesting a proliferative phenotype resembling that of cancer cells. It was previously shown that systemic genetic depletion of p53 in a murine PH model led to more severe lung manifestations. Lack of information about the role of cell-specific p53 signaling promoted us to investigate it in our mouse PH model with the inducible Cre-loxP system. We generated a mouse model with SMC-specific gain or loss of p53 function by crossing Myh11-Cre/ERT2 mice with floxed Mdm4 mice or floxed Trp53 mice. After these animals were exposed to hypoxia for 4 weeks, we conducted hemodynamic and echocardiographic studies. Surprisingly, the severity of PH was similar in both groups of mice and there were no differences between the genotypes. Our findings in these mice indicate that activation or suppression of p53 signaling in SMCs has a minor role in the pathogenesis of PH and suggest that p53 signaling in other cells (endothelial cells, immune cells, or fibroblasts) may be involved in the progression of this condition. |
format | Online Article Text |
id | pubmed-6391010 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-63910102019-03-08 Role of smooth muscle cell p53 in pulmonary arterial hypertension Wakasugi, Takayuki Shimizu, Ippei Yoshida, Yohko Hayashi, Yuka Ikegami, Ryutaro Suda, Masayoshi Katsuumi, Goro Nakao, Masaaki Hoyano, Makoto Kashimura, Takeshi Nakamura, Kazufumi Ito, Hiroshi Nojiri, Takashi Soga, Tomoyoshi Minamino, Tohru PLoS One Research Article Pulmonary arterial hypertension (PAH) is characterized by remodeling and narrowing of the pulmonary arteries, which lead to elevation of right ventricular pressure, heart failure, and death. Proliferation of pulmonary artery smooth muscle cells (PASMCs) is thought to be central to the pathogenesis of PAH, although the underlying mechanisms are still being explored. The protein p53 is involved in cell cycle coordination, DNA repair, apoptosis, and cellular senescence, but its role in pulmonary hypertension (PH) is not fully known. We developed a mouse model of hypoxia-induced pulmonary hypertension (PH) and found significant reduction of p53 expression in the lungs. Our in vitro experiments with metabolomic analyses and the Seahorse XF extracellular flux analyzer indicated that suppression of p53 expression in PASMCs led to upregulation of glycolysis and downregulation of mitochondrial respiration, suggesting a proliferative phenotype resembling that of cancer cells. It was previously shown that systemic genetic depletion of p53 in a murine PH model led to more severe lung manifestations. Lack of information about the role of cell-specific p53 signaling promoted us to investigate it in our mouse PH model with the inducible Cre-loxP system. We generated a mouse model with SMC-specific gain or loss of p53 function by crossing Myh11-Cre/ERT2 mice with floxed Mdm4 mice or floxed Trp53 mice. After these animals were exposed to hypoxia for 4 weeks, we conducted hemodynamic and echocardiographic studies. Surprisingly, the severity of PH was similar in both groups of mice and there were no differences between the genotypes. Our findings in these mice indicate that activation or suppression of p53 signaling in SMCs has a minor role in the pathogenesis of PH and suggest that p53 signaling in other cells (endothelial cells, immune cells, or fibroblasts) may be involved in the progression of this condition. Public Library of Science 2019-02-26 /pmc/articles/PMC6391010/ /pubmed/30807606 http://dx.doi.org/10.1371/journal.pone.0212889 Text en © 2019 Wakasugi et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Wakasugi, Takayuki Shimizu, Ippei Yoshida, Yohko Hayashi, Yuka Ikegami, Ryutaro Suda, Masayoshi Katsuumi, Goro Nakao, Masaaki Hoyano, Makoto Kashimura, Takeshi Nakamura, Kazufumi Ito, Hiroshi Nojiri, Takashi Soga, Tomoyoshi Minamino, Tohru Role of smooth muscle cell p53 in pulmonary arterial hypertension |
title | Role of smooth muscle cell p53 in pulmonary arterial hypertension |
title_full | Role of smooth muscle cell p53 in pulmonary arterial hypertension |
title_fullStr | Role of smooth muscle cell p53 in pulmonary arterial hypertension |
title_full_unstemmed | Role of smooth muscle cell p53 in pulmonary arterial hypertension |
title_short | Role of smooth muscle cell p53 in pulmonary arterial hypertension |
title_sort | role of smooth muscle cell p53 in pulmonary arterial hypertension |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6391010/ https://www.ncbi.nlm.nih.gov/pubmed/30807606 http://dx.doi.org/10.1371/journal.pone.0212889 |
work_keys_str_mv | AT wakasugitakayuki roleofsmoothmusclecellp53inpulmonaryarterialhypertension AT shimizuippei roleofsmoothmusclecellp53inpulmonaryarterialhypertension AT yoshidayohko roleofsmoothmusclecellp53inpulmonaryarterialhypertension AT hayashiyuka roleofsmoothmusclecellp53inpulmonaryarterialhypertension AT ikegamiryutaro roleofsmoothmusclecellp53inpulmonaryarterialhypertension AT sudamasayoshi roleofsmoothmusclecellp53inpulmonaryarterialhypertension AT katsuumigoro roleofsmoothmusclecellp53inpulmonaryarterialhypertension AT nakaomasaaki roleofsmoothmusclecellp53inpulmonaryarterialhypertension AT hoyanomakoto roleofsmoothmusclecellp53inpulmonaryarterialhypertension AT kashimuratakeshi roleofsmoothmusclecellp53inpulmonaryarterialhypertension AT nakamurakazufumi roleofsmoothmusclecellp53inpulmonaryarterialhypertension AT itohiroshi roleofsmoothmusclecellp53inpulmonaryarterialhypertension AT nojiritakashi roleofsmoothmusclecellp53inpulmonaryarterialhypertension AT sogatomoyoshi roleofsmoothmusclecellp53inpulmonaryarterialhypertension AT minaminotohru roleofsmoothmusclecellp53inpulmonaryarterialhypertension |