Cargando…

Regulation of the translation activity of antigen-specific mRNA is responsible for antigen loss and tumor immune escape in a HER2-expressing tumor model

Tumor cells tend to behave differently in response to immune selective conditions. Contrary to those in therapeutic antitumor conditions, tumor cells in prophylactic antitumor conditions lose antigen expression for antitumor immune escape. Here, using a CT26/HER2 tumor model, we investigate the unde...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Baek-Sang, Ji, Sunhee, Woo, Sungwon, Lee, Ji Heui, Sin, Jeong-Im
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6393588/
https://www.ncbi.nlm.nih.gov/pubmed/30814560
http://dx.doi.org/10.1038/s41598-019-39557-9
Descripción
Sumario:Tumor cells tend to behave differently in response to immune selective conditions. Contrary to those in therapeutic antitumor conditions, tumor cells in prophylactic antitumor conditions lose antigen expression for antitumor immune escape. Here, using a CT26/HER2 tumor model, we investigate the underlying mechanism(s). We selected tumor cell variants (CT26/HER2-A1 and -A2) displaying resistance to antitumor protective immunity and loss of HER2 antigen expression. These immune-resistant cells failed to induce Ag-specific IgG and IFN-γ responses while forming tumors at the same rate as CT26/HER2 cells. RT-PCR, qRT-PCR, PCR, Western blot and DNA sequencing analyses demonstrated that HER2 expression was inhibited at the post-transcriptional level in these immune-resistant cells, suggesting that tumor cells may escape antitumor immunity through the post-transcriptional regulation of antigen gene expression. The proteasome and lysosomal protein degradation pathways were not responsible for antigen loss, as determined by an inhibitor assay. Finally, HER2 mRNA was found to be not present in the monosomes and polysomes of CT26/HER2-A2 cells, as opposed to CT26/HER2 cells, suggesting that the translation activity of HER2 mRNAs may be suppressed in these immune-resistant cells. Taken together, our results report a new mechanism by which tumor cells respond to antitumor protective immunity for antitumor immune evasion.