Cargando…

Predicting time to dementia using a quantitative template of disease progression

INTRODUCTION: Characterization of longitudinal trajectories of biomarkers implicated in sporadic Alzheimer's disease (AD) in decades before clinical diagnosis is important for disease prevention and monitoring. METHODS: We used a multivariate Bayesian model to temporally align 1369 Alzheimer�...

Descripción completa

Detalles Bibliográficos
Autores principales: Bilgel, Murat, Jedynak, Bruno M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6396328/
https://www.ncbi.nlm.nih.gov/pubmed/30859120
http://dx.doi.org/10.1016/j.dadm.2019.01.005
_version_ 1783399230510989312
author Bilgel, Murat
Jedynak, Bruno M.
author_facet Bilgel, Murat
Jedynak, Bruno M.
author_sort Bilgel, Murat
collection PubMed
description INTRODUCTION: Characterization of longitudinal trajectories of biomarkers implicated in sporadic Alzheimer's disease (AD) in decades before clinical diagnosis is important for disease prevention and monitoring. METHODS: We used a multivariate Bayesian model to temporally align 1369 Alzheimer's disease Neuroimaging Initiative participants based on the similarity of their longitudinal biomarker measures and estimated a quantitative template of the temporal evolution of cerebrospinal fluid A [Formula: see text] , p- [Formula: see text] , and t-tau and hippocampal volume, brain glucose metabolism, and cognitive measurements. We computed biomarker trajectories as a function of time to AD dementia and predicted AD dementia onset age in a disjoint sample. RESULTS: Quantitative template showed early changes in verbal memory, cerebrospinal fluid Aβ(1–42) and p-tau(181p), and hippocampal volume. Mean error in predicted AD dementia onset age was [Formula: see text] years. DISCUSSION: Our method provides a quantitative approach for characterizing the natural history of AD starting at preclinical stages despite the lack of individual-level longitudinal data spanning the entire disease timeline.
format Online
Article
Text
id pubmed-6396328
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-63963282019-03-11 Predicting time to dementia using a quantitative template of disease progression Bilgel, Murat Jedynak, Bruno M. Alzheimers Dement (Amst) Diagnostic Assessment & Prognosis INTRODUCTION: Characterization of longitudinal trajectories of biomarkers implicated in sporadic Alzheimer's disease (AD) in decades before clinical diagnosis is important for disease prevention and monitoring. METHODS: We used a multivariate Bayesian model to temporally align 1369 Alzheimer's disease Neuroimaging Initiative participants based on the similarity of their longitudinal biomarker measures and estimated a quantitative template of the temporal evolution of cerebrospinal fluid A [Formula: see text] , p- [Formula: see text] , and t-tau and hippocampal volume, brain glucose metabolism, and cognitive measurements. We computed biomarker trajectories as a function of time to AD dementia and predicted AD dementia onset age in a disjoint sample. RESULTS: Quantitative template showed early changes in verbal memory, cerebrospinal fluid Aβ(1–42) and p-tau(181p), and hippocampal volume. Mean error in predicted AD dementia onset age was [Formula: see text] years. DISCUSSION: Our method provides a quantitative approach for characterizing the natural history of AD starting at preclinical stages despite the lack of individual-level longitudinal data spanning the entire disease timeline. Elsevier 2019-02-28 /pmc/articles/PMC6396328/ /pubmed/30859120 http://dx.doi.org/10.1016/j.dadm.2019.01.005 Text en © 2019 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Diagnostic Assessment & Prognosis
Bilgel, Murat
Jedynak, Bruno M.
Predicting time to dementia using a quantitative template of disease progression
title Predicting time to dementia using a quantitative template of disease progression
title_full Predicting time to dementia using a quantitative template of disease progression
title_fullStr Predicting time to dementia using a quantitative template of disease progression
title_full_unstemmed Predicting time to dementia using a quantitative template of disease progression
title_short Predicting time to dementia using a quantitative template of disease progression
title_sort predicting time to dementia using a quantitative template of disease progression
topic Diagnostic Assessment & Prognosis
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6396328/
https://www.ncbi.nlm.nih.gov/pubmed/30859120
http://dx.doi.org/10.1016/j.dadm.2019.01.005
work_keys_str_mv AT bilgelmurat predictingtimetodementiausingaquantitativetemplateofdiseaseprogression
AT jedynakbrunom predictingtimetodementiausingaquantitativetemplateofdiseaseprogression