Cargando…
Predicting time to dementia using a quantitative template of disease progression
INTRODUCTION: Characterization of longitudinal trajectories of biomarkers implicated in sporadic Alzheimer's disease (AD) in decades before clinical diagnosis is important for disease prevention and monitoring. METHODS: We used a multivariate Bayesian model to temporally align 1369 Alzheimer...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6396328/ https://www.ncbi.nlm.nih.gov/pubmed/30859120 http://dx.doi.org/10.1016/j.dadm.2019.01.005 |
_version_ | 1783399230510989312 |
---|---|
author | Bilgel, Murat Jedynak, Bruno M. |
author_facet | Bilgel, Murat Jedynak, Bruno M. |
author_sort | Bilgel, Murat |
collection | PubMed |
description | INTRODUCTION: Characterization of longitudinal trajectories of biomarkers implicated in sporadic Alzheimer's disease (AD) in decades before clinical diagnosis is important for disease prevention and monitoring. METHODS: We used a multivariate Bayesian model to temporally align 1369 Alzheimer's disease Neuroimaging Initiative participants based on the similarity of their longitudinal biomarker measures and estimated a quantitative template of the temporal evolution of cerebrospinal fluid A [Formula: see text] , p- [Formula: see text] , and t-tau and hippocampal volume, brain glucose metabolism, and cognitive measurements. We computed biomarker trajectories as a function of time to AD dementia and predicted AD dementia onset age in a disjoint sample. RESULTS: Quantitative template showed early changes in verbal memory, cerebrospinal fluid Aβ(1–42) and p-tau(181p), and hippocampal volume. Mean error in predicted AD dementia onset age was [Formula: see text] years. DISCUSSION: Our method provides a quantitative approach for characterizing the natural history of AD starting at preclinical stages despite the lack of individual-level longitudinal data spanning the entire disease timeline. |
format | Online Article Text |
id | pubmed-6396328 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-63963282019-03-11 Predicting time to dementia using a quantitative template of disease progression Bilgel, Murat Jedynak, Bruno M. Alzheimers Dement (Amst) Diagnostic Assessment & Prognosis INTRODUCTION: Characterization of longitudinal trajectories of biomarkers implicated in sporadic Alzheimer's disease (AD) in decades before clinical diagnosis is important for disease prevention and monitoring. METHODS: We used a multivariate Bayesian model to temporally align 1369 Alzheimer's disease Neuroimaging Initiative participants based on the similarity of their longitudinal biomarker measures and estimated a quantitative template of the temporal evolution of cerebrospinal fluid A [Formula: see text] , p- [Formula: see text] , and t-tau and hippocampal volume, brain glucose metabolism, and cognitive measurements. We computed biomarker trajectories as a function of time to AD dementia and predicted AD dementia onset age in a disjoint sample. RESULTS: Quantitative template showed early changes in verbal memory, cerebrospinal fluid Aβ(1–42) and p-tau(181p), and hippocampal volume. Mean error in predicted AD dementia onset age was [Formula: see text] years. DISCUSSION: Our method provides a quantitative approach for characterizing the natural history of AD starting at preclinical stages despite the lack of individual-level longitudinal data spanning the entire disease timeline. Elsevier 2019-02-28 /pmc/articles/PMC6396328/ /pubmed/30859120 http://dx.doi.org/10.1016/j.dadm.2019.01.005 Text en © 2019 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Diagnostic Assessment & Prognosis Bilgel, Murat Jedynak, Bruno M. Predicting time to dementia using a quantitative template of disease progression |
title | Predicting time to dementia using a quantitative template of disease progression |
title_full | Predicting time to dementia using a quantitative template of disease progression |
title_fullStr | Predicting time to dementia using a quantitative template of disease progression |
title_full_unstemmed | Predicting time to dementia using a quantitative template of disease progression |
title_short | Predicting time to dementia using a quantitative template of disease progression |
title_sort | predicting time to dementia using a quantitative template of disease progression |
topic | Diagnostic Assessment & Prognosis |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6396328/ https://www.ncbi.nlm.nih.gov/pubmed/30859120 http://dx.doi.org/10.1016/j.dadm.2019.01.005 |
work_keys_str_mv | AT bilgelmurat predictingtimetodementiausingaquantitativetemplateofdiseaseprogression AT jedynakbrunom predictingtimetodementiausingaquantitativetemplateofdiseaseprogression |