Cargando…
Predicting time to dementia using a quantitative template of disease progression
INTRODUCTION: Characterization of longitudinal trajectories of biomarkers implicated in sporadic Alzheimer's disease (AD) in decades before clinical diagnosis is important for disease prevention and monitoring. METHODS: We used a multivariate Bayesian model to temporally align 1369 Alzheimer...
Autores principales: | Bilgel, Murat, Jedynak, Bruno M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6396328/ https://www.ncbi.nlm.nih.gov/pubmed/30859120 http://dx.doi.org/10.1016/j.dadm.2019.01.005 |
Ejemplares similares
-
Predicting disease progression in behavioral variant frontotemporal dementia
por: Anderl‐Straub, Sarah, et al.
Publicado: (2021) -
The CAIDE Dementia Risk Score App: The development of an evidence-based mobile application to predict the risk of dementia
por: Sindi, Shireen, et al.
Publicado: (2015) -
Characterizing heterogeneity in the progression of Alzheimer's disease using longitudinal clinical and neuroimaging biomarkers
por: Goyal, Devendra, et al.
Publicado: (2018) -
Development of a dementia prediction model for primary care: The Hisayama Study
por: Honda, Takanori, et al.
Publicado: (2021) -
Multi‐time‐point data preparation robustly reveals MCI and dementia risk factors
por: Kaur, Daman, et al.
Publicado: (2020)