Cargando…
Rapid analysis of intraperitoneally administered morphine in mouse plasma and brain by microchip electrophoresis-electrochemical detection
Animal studies remain an essential part of drug discovery since in vitro models are not capable of describing the complete living organism. We developed and qualified a microchip electrophoresis-electrochemical detection (MCE-EC) method for rapid analysis of morphine in mouse plasma using a commerci...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6397260/ https://www.ncbi.nlm.nih.gov/pubmed/30824794 http://dx.doi.org/10.1038/s41598-019-40116-5 |
Sumario: | Animal studies remain an essential part of drug discovery since in vitro models are not capable of describing the complete living organism. We developed and qualified a microchip electrophoresis-electrochemical detection (MCE-EC) method for rapid analysis of morphine in mouse plasma using a commercial MCE-EC device. Following liquid-liquid extraction (LLE), we achieved within-run precision of 3.7 and 4.5% (coefficient of variation, CV, n = 6) and accuracy of 106.9% and 100.7% at biologically relevant morphine concentrations of 5 and 20 µM in plasma, respectively. The same method was further challenged by morphine detection in mouse brain homogenates with equally good within-run precision (7.8% CV, n = 5) at 1 µM concentration. The qualified method was applied to analyze a set of plasma and brain homogenate samples derived from a behavioral animal study. After intraperitoneal administration of 20 mg/kg morphine hydrochloride, the detected morphine concentrations in plasma were between 6.7 and 17 µM. As expected, the morphine concentrations in the brain were significantly lower, ca. 80–125 nM (280–410 pg morphine/mg dissected brain), and could only be detected after preconcentration achieved during LLE. In all, the microchip-based separation system is proven feasible for rapid analysis of morphine to provide supplementary chemical information to behavioral animal studies. |
---|