Cargando…
Identification of a novel potassium channel (GiK) as a potential drug target in Giardia lamblia: Computational descriptions of binding sites
BACKGROUND: The protozoan Giardia lamblia is the causal agent of giardiasis, one of the main diarrheal infections worldwide. Drug resistance to common antigiardial agents and incidence of treatment failures have increased in recent years. Therefore, the search for new molecular targets for drugs aga...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6397635/ https://www.ncbi.nlm.nih.gov/pubmed/30834181 http://dx.doi.org/10.7717/peerj.6430 |
_version_ | 1783399444789592064 |
---|---|
author | Palomo-Ligas, Lissethe Gutiérrez-Gutiérrez, Filiberto Ochoa-Maganda, Verónica Yadira Cortés-Zárate, Rafael Charles-Niño, Claudia Lisette Castillo-Romero, Araceli |
author_facet | Palomo-Ligas, Lissethe Gutiérrez-Gutiérrez, Filiberto Ochoa-Maganda, Verónica Yadira Cortés-Zárate, Rafael Charles-Niño, Claudia Lisette Castillo-Romero, Araceli |
author_sort | Palomo-Ligas, Lissethe |
collection | PubMed |
description | BACKGROUND: The protozoan Giardia lamblia is the causal agent of giardiasis, one of the main diarrheal infections worldwide. Drug resistance to common antigiardial agents and incidence of treatment failures have increased in recent years. Therefore, the search for new molecular targets for drugs against Giardia infection is essential. In protozoa, ionic channels have roles in their life cycle, growth, and stress response. Thus, they are promising targets for drug design. The strategy of ligand-protein docking has demonstrated a great potential in the discovery of new targets and structure-based drug design studies. METHODS: In this work, we identify and characterize a new potassium channel, GiK, in the genome of Giardia lamblia. Characterization was performed in silico. Because its crystallographic structure remains unresolved, homology modeling was used to construct the three-dimensional model for the pore domain of GiK. The docking virtual screening approach was employed to determine whether GiK is a good target for potassium channel blockers. RESULTS: The GiK sequence showed 24–50% identity and 50–90% positivity with 21 different types of potassium channels. The quality assessment and validation parameters indicated the reliability of the modeled structure of GiK. We identified 110 potassium channel blockers exhibiting high affinity toward GiK. A total of 39 of these drugs bind in three specific regions. DISCUSSION: The GiK pore signature sequence is related to the small conductance calcium-activated potassium channels (SKCa). The predicted binding of 110 potassium blockers to GiK makes this protein an attractive target for biological testing to evaluate its role in the life cycle of Giardia lamblia and potential candidate for the design of novel antigiardial drugs. |
format | Online Article Text |
id | pubmed-6397635 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-63976352019-03-04 Identification of a novel potassium channel (GiK) as a potential drug target in Giardia lamblia: Computational descriptions of binding sites Palomo-Ligas, Lissethe Gutiérrez-Gutiérrez, Filiberto Ochoa-Maganda, Verónica Yadira Cortés-Zárate, Rafael Charles-Niño, Claudia Lisette Castillo-Romero, Araceli PeerJ Bioinformatics BACKGROUND: The protozoan Giardia lamblia is the causal agent of giardiasis, one of the main diarrheal infections worldwide. Drug resistance to common antigiardial agents and incidence of treatment failures have increased in recent years. Therefore, the search for new molecular targets for drugs against Giardia infection is essential. In protozoa, ionic channels have roles in their life cycle, growth, and stress response. Thus, they are promising targets for drug design. The strategy of ligand-protein docking has demonstrated a great potential in the discovery of new targets and structure-based drug design studies. METHODS: In this work, we identify and characterize a new potassium channel, GiK, in the genome of Giardia lamblia. Characterization was performed in silico. Because its crystallographic structure remains unresolved, homology modeling was used to construct the three-dimensional model for the pore domain of GiK. The docking virtual screening approach was employed to determine whether GiK is a good target for potassium channel blockers. RESULTS: The GiK sequence showed 24–50% identity and 50–90% positivity with 21 different types of potassium channels. The quality assessment and validation parameters indicated the reliability of the modeled structure of GiK. We identified 110 potassium channel blockers exhibiting high affinity toward GiK. A total of 39 of these drugs bind in three specific regions. DISCUSSION: The GiK pore signature sequence is related to the small conductance calcium-activated potassium channels (SKCa). The predicted binding of 110 potassium blockers to GiK makes this protein an attractive target for biological testing to evaluate its role in the life cycle of Giardia lamblia and potential candidate for the design of novel antigiardial drugs. PeerJ Inc. 2019-02-27 /pmc/articles/PMC6397635/ /pubmed/30834181 http://dx.doi.org/10.7717/peerj.6430 Text en © 2019 Palomo-Ligas et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Bioinformatics Palomo-Ligas, Lissethe Gutiérrez-Gutiérrez, Filiberto Ochoa-Maganda, Verónica Yadira Cortés-Zárate, Rafael Charles-Niño, Claudia Lisette Castillo-Romero, Araceli Identification of a novel potassium channel (GiK) as a potential drug target in Giardia lamblia: Computational descriptions of binding sites |
title | Identification of a novel potassium channel (GiK) as a potential drug target in Giardia lamblia: Computational descriptions of binding sites |
title_full | Identification of a novel potassium channel (GiK) as a potential drug target in Giardia lamblia: Computational descriptions of binding sites |
title_fullStr | Identification of a novel potassium channel (GiK) as a potential drug target in Giardia lamblia: Computational descriptions of binding sites |
title_full_unstemmed | Identification of a novel potassium channel (GiK) as a potential drug target in Giardia lamblia: Computational descriptions of binding sites |
title_short | Identification of a novel potassium channel (GiK) as a potential drug target in Giardia lamblia: Computational descriptions of binding sites |
title_sort | identification of a novel potassium channel (gik) as a potential drug target in giardia lamblia: computational descriptions of binding sites |
topic | Bioinformatics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6397635/ https://www.ncbi.nlm.nih.gov/pubmed/30834181 http://dx.doi.org/10.7717/peerj.6430 |
work_keys_str_mv | AT palomoligaslissethe identificationofanovelpotassiumchannelgikasapotentialdrugtargetingiardialambliacomputationaldescriptionsofbindingsites AT gutierrezgutierrezfiliberto identificationofanovelpotassiumchannelgikasapotentialdrugtargetingiardialambliacomputationaldescriptionsofbindingsites AT ochoamagandaveronicayadira identificationofanovelpotassiumchannelgikasapotentialdrugtargetingiardialambliacomputationaldescriptionsofbindingsites AT corteszaraterafael identificationofanovelpotassiumchannelgikasapotentialdrugtargetingiardialambliacomputationaldescriptionsofbindingsites AT charlesninoclaudialisette identificationofanovelpotassiumchannelgikasapotentialdrugtargetingiardialambliacomputationaldescriptionsofbindingsites AT castilloromeroaraceli identificationofanovelpotassiumchannelgikasapotentialdrugtargetingiardialambliacomputationaldescriptionsofbindingsites |