Cargando…
DESTINI: A deep-learning approach to contact-driven protein structure prediction
The amino acid sequence of a protein encodes the blueprint of its native structure. To predict the corresponding structural fold from the protein’s sequence is one of most challenging problems in computational biology. In this work, we introduce DESTINI (deep structural inference for proteins), a no...
Autores principales: | Gao, Mu, Zhou, Hongyi, Skolnick, Jeffrey |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6401133/ https://www.ncbi.nlm.nih.gov/pubmed/30837676 http://dx.doi.org/10.1038/s41598-019-40314-1 |
Ejemplares similares
-
Deep learning-driven insights into super protein complexes for outer membrane protein biogenesis in bacteria
por: Gao, Mu, et al.
Publicado: (2022) -
ENTPRISE: An Algorithm for Predicting Human Disease-Associated Amino Acid Substitutions from Sequence Entropy and Predicted Protein Structures
por: Zhou, Hongyi, et al.
Publicado: (2016) -
Comprehensive prediction of drug-protein interactions and side effects for the human proteome
por: Zhou, Hongyi, et al.
Publicado: (2015) -
AF2Complex predicts direct physical interactions in multimeric proteins with deep learning
por: Gao, Mu, et al.
Publicado: (2022) -
ENTPRISE-X: Predicting disease-associated frameshift and nonsense mutations
por: Zhou, Hongyi, et al.
Publicado: (2018)