Cargando…
Co-inhibitory T cell receptor KLRG1: human cancer expression and efficacy of neutralization in murine cancer models
BACKGROUND: KLRG1 is a lymphocyte co-inhibitory, or immune checkpoint, receptor expressed predominantly on late-differentiated effector and effector memory CD8+ T and NK cells. Targeting of KLRG1 neutralization in murine cancer models has not previously been reported. METHODS: We studied KLRG1 expre...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6402715/ https://www.ncbi.nlm.nih.gov/pubmed/30858925 http://dx.doi.org/10.18632/oncotarget.26659 |
_version_ | 1783400456244953088 |
---|---|
author | Greenberg, Steven A. Kong, Sek Won Thompson, Evan Gulla, Stefano V. |
author_facet | Greenberg, Steven A. Kong, Sek Won Thompson, Evan Gulla, Stefano V. |
author_sort | Greenberg, Steven A. |
collection | PubMed |
description | BACKGROUND: KLRG1 is a lymphocyte co-inhibitory, or immune checkpoint, receptor expressed predominantly on late-differentiated effector and effector memory CD8+ T and NK cells. Targeting of KLRG1 neutralization in murine cancer models has not previously been reported. METHODS: We studied KLRG1 expression in human blood and tumor samples from available genomic datasets. Anti-KLRG1 neutralizing antibody was studied in the murine 4T1 breast cancer as monotherapy, and in the MC38 colon cancer and B16F10 melanoma models as combination therapy with anti-PD-1 antibody. RESULTS: In human blood and tumor samples, KLRG1 expression is aligned with cytotoxic T and NK cell differentiation, and upregulated in human tumor samples after a variety of therapies, potentially contributing to adaptive resistance. In in vivo murine models, anti-KLRG1 antibody monotherapy in the 4T1 breast cancer model reduced lung metastases (decreased lung weights p=0.04; decreased nodule count p=0.002), while anti-KLRG1 + anti-PD-1 combination therapy in the MC38 colon cancer and B16F10 melanoma models produced synergistic benefit greater than anti-PD-1 alone for tumor volume (MC38 p=0.01; B16F10 p=0.007) and survival (MC38 p=0.02; B16F10 p=0.002). CONCLUSIONS: These studies provide the first evidence that inhibition of the KLRG1 pathway enhances immune control of cancer in murine models, and provide target validation for KLRG1 targeting of human cancer. The mechanism of efficacy of KLRG1 blockade in murine models remains to be determined. |
format | Online Article Text |
id | pubmed-6402715 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-64027152019-03-11 Co-inhibitory T cell receptor KLRG1: human cancer expression and efficacy of neutralization in murine cancer models Greenberg, Steven A. Kong, Sek Won Thompson, Evan Gulla, Stefano V. Oncotarget Research Paper BACKGROUND: KLRG1 is a lymphocyte co-inhibitory, or immune checkpoint, receptor expressed predominantly on late-differentiated effector and effector memory CD8+ T and NK cells. Targeting of KLRG1 neutralization in murine cancer models has not previously been reported. METHODS: We studied KLRG1 expression in human blood and tumor samples from available genomic datasets. Anti-KLRG1 neutralizing antibody was studied in the murine 4T1 breast cancer as monotherapy, and in the MC38 colon cancer and B16F10 melanoma models as combination therapy with anti-PD-1 antibody. RESULTS: In human blood and tumor samples, KLRG1 expression is aligned with cytotoxic T and NK cell differentiation, and upregulated in human tumor samples after a variety of therapies, potentially contributing to adaptive resistance. In in vivo murine models, anti-KLRG1 antibody monotherapy in the 4T1 breast cancer model reduced lung metastases (decreased lung weights p=0.04; decreased nodule count p=0.002), while anti-KLRG1 + anti-PD-1 combination therapy in the MC38 colon cancer and B16F10 melanoma models produced synergistic benefit greater than anti-PD-1 alone for tumor volume (MC38 p=0.01; B16F10 p=0.007) and survival (MC38 p=0.02; B16F10 p=0.002). CONCLUSIONS: These studies provide the first evidence that inhibition of the KLRG1 pathway enhances immune control of cancer in murine models, and provide target validation for KLRG1 targeting of human cancer. The mechanism of efficacy of KLRG1 blockade in murine models remains to be determined. Impact Journals LLC 2019-02-15 /pmc/articles/PMC6402715/ /pubmed/30858925 http://dx.doi.org/10.18632/oncotarget.26659 Text en Copyright: © 2019 Greenberg et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (http://creativecommons.org/licenses/by/3.0/) (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Greenberg, Steven A. Kong, Sek Won Thompson, Evan Gulla, Stefano V. Co-inhibitory T cell receptor KLRG1: human cancer expression and efficacy of neutralization in murine cancer models |
title | Co-inhibitory T cell receptor KLRG1: human cancer expression and efficacy of neutralization in murine cancer models |
title_full | Co-inhibitory T cell receptor KLRG1: human cancer expression and efficacy of neutralization in murine cancer models |
title_fullStr | Co-inhibitory T cell receptor KLRG1: human cancer expression and efficacy of neutralization in murine cancer models |
title_full_unstemmed | Co-inhibitory T cell receptor KLRG1: human cancer expression and efficacy of neutralization in murine cancer models |
title_short | Co-inhibitory T cell receptor KLRG1: human cancer expression and efficacy of neutralization in murine cancer models |
title_sort | co-inhibitory t cell receptor klrg1: human cancer expression and efficacy of neutralization in murine cancer models |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6402715/ https://www.ncbi.nlm.nih.gov/pubmed/30858925 http://dx.doi.org/10.18632/oncotarget.26659 |
work_keys_str_mv | AT greenbergstevena coinhibitorytcellreceptorklrg1humancancerexpressionandefficacyofneutralizationinmurinecancermodels AT kongsekwon coinhibitorytcellreceptorklrg1humancancerexpressionandefficacyofneutralizationinmurinecancermodels AT thompsonevan coinhibitorytcellreceptorklrg1humancancerexpressionandefficacyofneutralizationinmurinecancermodels AT gullastefanov coinhibitorytcellreceptorklrg1humancancerexpressionandefficacyofneutralizationinmurinecancermodels |