Cargando…

Universal Fermi-Level Pinning in Transition-Metal Dichalcogenides

[Image: see text] Understanding the electron transport through transition-metal dichalcogenide (TMDC)-based semiconductor/metal junctions is vital for the realization of future TMDC-based (opto-)electronic devices. Despite the bonding in TMDCs being largely constrained within the layers, strong Ferm...

Descripción completa

Detalles Bibliográficos
Autores principales: Sotthewes, Kai, van Bremen, Rik, Dollekamp, Edwin, Boulogne, Tim, Nowakowski, Krystian, Kas, Daan, Zandvliet, Harold J. W., Bampoulis, Pantelis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6410613/
https://www.ncbi.nlm.nih.gov/pubmed/30873255
http://dx.doi.org/10.1021/acs.jpcc.8b10971
_version_ 1783402280383414272
author Sotthewes, Kai
van Bremen, Rik
Dollekamp, Edwin
Boulogne, Tim
Nowakowski, Krystian
Kas, Daan
Zandvliet, Harold J. W.
Bampoulis, Pantelis
author_facet Sotthewes, Kai
van Bremen, Rik
Dollekamp, Edwin
Boulogne, Tim
Nowakowski, Krystian
Kas, Daan
Zandvliet, Harold J. W.
Bampoulis, Pantelis
author_sort Sotthewes, Kai
collection PubMed
description [Image: see text] Understanding the electron transport through transition-metal dichalcogenide (TMDC)-based semiconductor/metal junctions is vital for the realization of future TMDC-based (opto-)electronic devices. Despite the bonding in TMDCs being largely constrained within the layers, strong Fermi-level pinning (FLP) was observed in TMDC-based devices, reducing the tunability of the Schottky barrier height. We present evidence that metal-induced gap states (MIGS) are the origin for the large FLP similar to conventional semiconductors. A variety of TMDCs (MoSe(2), WSe(2), WS(2), and MoTe(2)) were investigated using high-spatial-resolution surface characterization techniques, permitting us to distinguish between defected and pristine regions. The Schottky barrier heights on the pristine regions can be explained by MIGS, inducing partial FLP. The FLP strength is further enhanced by disorder-induced gap states induced by transition-metal vacancies or substitutionals at the defected regions. Our findings emphasize the importance of defects on the electron transport properties in TMDC-based devices and confirm the origin of FLP in TMDC-based metal/semiconductor junctions.
format Online
Article
Text
id pubmed-6410613
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-64106132019-03-12 Universal Fermi-Level Pinning in Transition-Metal Dichalcogenides Sotthewes, Kai van Bremen, Rik Dollekamp, Edwin Boulogne, Tim Nowakowski, Krystian Kas, Daan Zandvliet, Harold J. W. Bampoulis, Pantelis J Phys Chem C Nanomater Interfaces [Image: see text] Understanding the electron transport through transition-metal dichalcogenide (TMDC)-based semiconductor/metal junctions is vital for the realization of future TMDC-based (opto-)electronic devices. Despite the bonding in TMDCs being largely constrained within the layers, strong Fermi-level pinning (FLP) was observed in TMDC-based devices, reducing the tunability of the Schottky barrier height. We present evidence that metal-induced gap states (MIGS) are the origin for the large FLP similar to conventional semiconductors. A variety of TMDCs (MoSe(2), WSe(2), WS(2), and MoTe(2)) were investigated using high-spatial-resolution surface characterization techniques, permitting us to distinguish between defected and pristine regions. The Schottky barrier heights on the pristine regions can be explained by MIGS, inducing partial FLP. The FLP strength is further enhanced by disorder-induced gap states induced by transition-metal vacancies or substitutionals at the defected regions. Our findings emphasize the importance of defects on the electron transport properties in TMDC-based devices and confirm the origin of FLP in TMDC-based metal/semiconductor junctions. American Chemical Society 2019-02-14 2019-03-07 /pmc/articles/PMC6410613/ /pubmed/30873255 http://dx.doi.org/10.1021/acs.jpcc.8b10971 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.
spellingShingle Sotthewes, Kai
van Bremen, Rik
Dollekamp, Edwin
Boulogne, Tim
Nowakowski, Krystian
Kas, Daan
Zandvliet, Harold J. W.
Bampoulis, Pantelis
Universal Fermi-Level Pinning in Transition-Metal Dichalcogenides
title Universal Fermi-Level Pinning in Transition-Metal Dichalcogenides
title_full Universal Fermi-Level Pinning in Transition-Metal Dichalcogenides
title_fullStr Universal Fermi-Level Pinning in Transition-Metal Dichalcogenides
title_full_unstemmed Universal Fermi-Level Pinning in Transition-Metal Dichalcogenides
title_short Universal Fermi-Level Pinning in Transition-Metal Dichalcogenides
title_sort universal fermi-level pinning in transition-metal dichalcogenides
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6410613/
https://www.ncbi.nlm.nih.gov/pubmed/30873255
http://dx.doi.org/10.1021/acs.jpcc.8b10971
work_keys_str_mv AT sottheweskai universalfermilevelpinningintransitionmetaldichalcogenides
AT vanbremenrik universalfermilevelpinningintransitionmetaldichalcogenides
AT dollekampedwin universalfermilevelpinningintransitionmetaldichalcogenides
AT boulognetim universalfermilevelpinningintransitionmetaldichalcogenides
AT nowakowskikrystian universalfermilevelpinningintransitionmetaldichalcogenides
AT kasdaan universalfermilevelpinningintransitionmetaldichalcogenides
AT zandvlietharoldjw universalfermilevelpinningintransitionmetaldichalcogenides
AT bampoulispantelis universalfermilevelpinningintransitionmetaldichalcogenides