Cargando…
Deep elastic strain engineering of bandgap through machine learning
Nanoscale specimens of semiconductor materials as diverse as silicon and diamond are now known to be deformable to large elastic strains without inelastic relaxation. These discoveries harbinger a new age of deep elastic strain engineering of the band structure and device performance of electronic m...
Autores principales: | Shi, Zhe, Tsymbalov, Evgenii, Dao, Ming, Suresh, Subra, Shapeev, Alexander, Li, Ju |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6410806/ https://www.ncbi.nlm.nih.gov/pubmed/30770444 http://dx.doi.org/10.1073/pnas.1818555116 |
Ejemplares similares
-
Metallization of diamond
por: Shi, Zhe, et al.
Publicado: (2020) -
Metamaterials for simultaneous acoustic and elastic bandgaps
por: Elmadih, Waiel, et al.
Publicado: (2021) -
Machine learning bandgaps of double perovskites
por: Pilania, G., et al.
Publicado: (2016) -
Polarization bandgaps and fluid-like elasticity in fully solid elastic metamaterials
por: Ma, Guancong, et al.
Publicado: (2016) -
Extraction of mechanical properties of materials through deep learning from instrumented indentation
por: Lu, Lu, et al.
Publicado: (2020)