Cargando…
Nicotinamide phosphoribosyltransferase expression and clinical outcome of resected stage I/II pancreatic ductal adenocarcinoma
BACKGROUND: Nicotinamide phosphoribosyltransferase (NAMPT) plays a key role in the biosynthesis of nicotinamide adenine dinucleotide (NAD(+)), which is a vital cofactor in redox reactions and a substrate for NAD(+) consuming enzymes including CD38, PARPs and sirtuins. NAMPT over-expression has been...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6411120/ https://www.ncbi.nlm.nih.gov/pubmed/30856230 http://dx.doi.org/10.1371/journal.pone.0213576 |
Sumario: | BACKGROUND: Nicotinamide phosphoribosyltransferase (NAMPT) plays a key role in the biosynthesis of nicotinamide adenine dinucleotide (NAD(+)), which is a vital cofactor in redox reactions and a substrate for NAD(+) consuming enzymes including CD38, PARPs and sirtuins. NAMPT over-expression has been shown in various cancers and its inhibition decreases cancer cell growth, making it an attractive therapeutic target. Here we examine the NAMPT expression in a large cohort of resected stage I/II pancreatic ductal adenocarcinomas (PDAs) and correlate its expression with clinical outcomes and pathologic features. METHODS: A retrospective review of patients with PDAs was conducted at a single institution. Tissue microarrays (TMAs) containing primary PDAs and their metastatic lymph nodes (mLNs) were constructed and stained for NAMPT expression. Each TMA core was evaluated for staining intensity of cancer cells (0 = no staining, 1+ = weak, 2+ = moderate, 3+ = strong) and a mean score was calculated for each case with at least two evaluable cores. NAMPT expression was correlated with clinicopathological variables using chi-squared or Fisher’s exact test, and t-tests for categorical and continuous variables, respectively. Survival probabilities were estimated and plotted using the Kaplan-Meier method. Cox proportional hazards regression was used to assess the effects of NAMPT staining values on recurrence-free survival (RFS) and overall survival (OS). This study was conducted under an approved IRB protocol. RESULTS: 173 primary PDAs had at least 2 TMA cores with identifiable cancer cells. The mean IHC score was 0.55 (range: 0 to 2.33). The mean IHC score of mLNs was 0.39 (range: 0–2), which was not significantly different from their primary tumors (mean IHC score = 0.47, P = 0.38). Sixty-four percent (111/173) of PDAs were positive for NAMPT staining. Stage II tumors were more likely to be positive (68% of 151 vs 41% of 22; P = 0.01). Non-obese non-diabetic patients were more likely to have NAMPT+ tumors (43.7% vs. 27.9%, P = 0.04). While RFS and OS were not statistically different between NAMPT+ vs. NAMPT- PDAs, patients with NAMPT- tumors tended to have a longer median OS (26.0 vs. 20.4 months, P = 0.34). CONCLUSION: NAMPT expression was detected in 64% of stage I/II PDAs and up to 72% in non-obese non-diabetic patients. Frequency of NAMPT expression correlated with pathological stage, consistent with published literature regarding its role in cancer progression. While RFS and OS were not statistically significantly different, patients with NAMPT+ PDAs tended to have a shorter survival. Thus, NAMPT inhibition may prove beneficial in clinical trials. |
---|