Cargando…
Metformin triggers the intrinsic apoptotic response in human AGS gastric adenocarcinoma cells by activating AMPK and suppressing mTOR/AKT signaling
Metformin is commonly used to treat patients with type 2 diabetes and is associated with a decreased risk of cancer. Previous studies have demonstrated that metformin can act alone or in synergy with certain anticancer agents to achieve anti-neoplastic effects on various types of tumors via adenosin...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6411354/ https://www.ncbi.nlm.nih.gov/pubmed/30720062 http://dx.doi.org/10.3892/ijo.2019.4704 |
Sumario: | Metformin is commonly used to treat patients with type 2 diabetes and is associated with a decreased risk of cancer. Previous studies have demonstrated that metformin can act alone or in synergy with certain anticancer agents to achieve anti-neoplastic effects on various types of tumors via adenosine monophosphate-activated protein kinase (AMPK) signaling. However, the role of metformin in AMPK-mediated apoptosis of human gastric cancer cells is poorly understood. In the current study, metformin exhibited a potent anti-proliferative effect and induced apoptotic characteristics in human AGS gastric adenocarcinoma cells, as demonstrated by MTT assay, morphological observation method, terminal deoxynucleotidyl transferase dUTP nick end labeling and caspase-3/7 assay kits. Western blot analysis demonstrated that treatment with metformin increased the phosphorylation of AMPK, and decreased the phosphorylation of AKT, mTOR and p70S6k. Compound C (an AMPK inhibitor) suppressed AMPK phosphorylation and significantly abrogated the effects of metformin on AGS cell viability. Metformin also reduced the phosphorylation of mitogen-activated protein kinases (ERK, JNK and p38). Additionally, metformin significantly increased the cellular ROS level and included loss of mitochondrial membrane potential (ΔΨm). Metformin altered apoptosis-associated signaling to downregulate the BAD phosphorylation and Bcl-2, pro-caspase-9, pro-caspase-3 and pro-caspase-7 expression, and to upregulate BAD, cytochrome c, and Apaf-1 proteins levels in AGS cells. Furthermore, z-VAD-fmk (a pan-caspase inhibitor) was used to assess mitochondria-mediated caspase-dependent apoptosis in metformin-treated AGS cells. The findings demonstrated that metformin induced AMPK-mediated apoptosis, making it appealing for development as a novel anticancer drug for the treating gastric cancer. |
---|