Cargando…

Implications of Change/Stability Patterns in Children’s Non-symbolic and Symbolic Magnitude Judgment Abilities Over One Year: A Latent Transition Analysis

Non-symbolic magnitude abilities are often claimed to support the acquisition of symbolic magnitude abilities, which, in turn, are claimed to support emerging math abilities. However, not all studies find links between non-symbolic and symbolic magnitude abilities, or between them and math ability....

Descripción completa

Detalles Bibliográficos
Autores principales: Chew, Cindy S., Forte, Jason D., Reeve, Robert A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6411817/
https://www.ncbi.nlm.nih.gov/pubmed/30890984
http://dx.doi.org/10.3389/fpsyg.2019.00441
Descripción
Sumario:Non-symbolic magnitude abilities are often claimed to support the acquisition of symbolic magnitude abilities, which, in turn, are claimed to support emerging math abilities. However, not all studies find links between non-symbolic and symbolic magnitude abilities, or between them and math ability. To investigate possible reasons for these different findings, recent research has analyzed differences in non-symbolic/symbolic magnitude abilities using latent class modeling and has identified four different magnitude ability profiles residing within the general magnitude ability distribution that were differentially related to cognitive and math abilities. These findings may help explain the different patterns of findings observed in previous research. To further investigate this possibility, we (1) attempted to replicate earlier findings, (2) determine whether magnitude ability profiles remained stable or changed over 1 year; and (3) assessed the degree to which stability/change in profiles were related to cognitive and math abilities. We used latent transition analysis to investigate stability/changes in non-symbolic and symbolic magnitude abilities of 109 5- to 6-year olds twice in 1 year. At Time 1 and 2, non-symbolic and symbolic magnitude abilities, number transcoding and single-digit addition abilities were assessed. Visuospatial working memory (VSWM), naming numbers, non-verbal IQ, basic RT was also assessed at Time 1. Analysis showed stability in one profile and changes in the three others over 1 year. VSWM and naming numbers predicted profile membership at Time 1 and 2, and profile membership predicted math abilities at both time points. The findings confirm the existence of four different non-symbolic–symbolic magnitude ability profiles; we suggest the changes over time in them potentially reflect deficit, delay, and normal math developmental pathways.