Cargando…
Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers
There is often a trade-off between mechanical properties (modulus and toughness) and dynamic self-healing. Here we report the design and synthesis of a polymer containing thermodynamically stable whilst kinetically labile coordination complex to address this conundrum. The Zn-Hbimcp (Hbimcp = 2,6-bi...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6411951/ https://www.ncbi.nlm.nih.gov/pubmed/30858371 http://dx.doi.org/10.1038/s41467-019-09130-z |
Sumario: | There is often a trade-off between mechanical properties (modulus and toughness) and dynamic self-healing. Here we report the design and synthesis of a polymer containing thermodynamically stable whilst kinetically labile coordination complex to address this conundrum. The Zn-Hbimcp (Hbimcp = 2,6-bis((imino)methyl)-4-chlorophenol) coordination bond used in this work has a relatively large association constant (2.2 × 10(11)) but also undergoes fast and reversible intra- and inter-molecular ligand exchange processes. The as-prepared Zn(Hbimcp)(2)-PDMS polymer is highly stretchable (up to 2400% strain) with a high toughness of 29.3 MJ m(−3), and can autonomously self-heal at room temperature. Control experiments showed that the optimal combination of its bond strength and bond dynamics is responsible for the material’s mechanical toughness and self-healing property. This molecular design concept points out a promising direction for the preparation of self-healing polymers with excellent mechanical properties. We further show this type of polymer can be potentially used as energy absorbing material. |
---|