Cargando…
Measurement and Time Response of Electrohydrodynamic Direct-Writing Current
The micro/nano current is an important characteristic to reflect the electrohydrodynamic direct-writing (EDW) process. In this paper, a direct-written current measurement system with a high signal to noise ratio was proposed to monitor the charged jets, providing the data basis for the promotion of...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412434/ https://www.ncbi.nlm.nih.gov/pubmed/30691100 http://dx.doi.org/10.3390/mi10020090 |
Sumario: | The micro/nano current is an important characteristic to reflect the electrohydrodynamic direct-writing (EDW) process. In this paper, a direct-written current measurement system with a high signal to noise ratio was proposed to monitor the charged jets, providing the data basis for the promotion of stability and precision of the EDW jet. The electrical characteristics of the printing process were studied, the electrohydrodynamic direct-written current was associated with the stability of charged jet and the accuracy of direct-written patterns. There was an impulse current when the front end of the jet reached the collector and then a stable jet could be gained. With the increase of applied voltage, the severe fluctuation of measured current increased, the charged jet became more unstable and the accuracy of direct-written parallel lines was lower. The effects of processing parameters on direct-written current were also investigated. The average direct-written current at the stable stage increased as the applied voltage and polymer concentration increased, and it decreased as the distance from the nozzle to the collector increased. This research will promote the development and applications of EDW technology in the fields of micro/nano manufacturing. |
---|