Cargando…

High-risk human papillomavirus oncogenes disrupt the Fanconi anemia DNA repair pathway by impairing localization and de-ubiquitination of FancD2

Persistent expression of high-risk HPV oncogenes is necessary for the development of anogenital and oropharyngeal cancers. Here, we show that E6/E7 expressing cells are hypersensitive to DNA crosslinking agent cisplatin and have defects in repairing DNA interstrand crosslinks (ICL). Importantly, we...

Descripción completa

Detalles Bibliográficos
Autores principales: Khanal, Sujita, Galloway, Denise A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6413947/
https://www.ncbi.nlm.nih.gov/pubmed/30818369
http://dx.doi.org/10.1371/journal.ppat.1007442
Descripción
Sumario:Persistent expression of high-risk HPV oncogenes is necessary for the development of anogenital and oropharyngeal cancers. Here, we show that E6/E7 expressing cells are hypersensitive to DNA crosslinking agent cisplatin and have defects in repairing DNA interstrand crosslinks (ICL). Importantly, we elucidate how E6/E7 attenuate the Fanconi anemia (FA) DNA crosslink repair pathway. Though E6/E7 activated the pathway by increasing FancD2 monoubiquitination and foci formation, they inhibited the completion of the repair by multiple mechanisms. E6/E7 impaired FancD2 colocalization with double-strand breaks (DSB), which subsequently hindered the recruitment of the downstream protein Rad51 to DSB in E6 cells. Further, E6 expression caused delayed FancD2 de-ubiquitination, an important process for effective ICL repair. Delayed FancD2 de-ubiquitination was associated with the increased chromatin retention of FancD2 hindering USP1 de-ubiquitinating activity, and persistently activated ATR/CHK-1/pS565 FancI signaling. E6 mediated p53 degradation did not hamper the cell cycle specific process of FancD2 modifications but abrogated repair by disrupting FancD2 de-ubiquitination. Further, E6 reduced the expression and foci formation of Palb2, which is a repair protein downstream of FancD2. These findings uncover unique mechanisms by which HPV oncogenes contribute to genomic instability and the response to cisplatin therapies.