Cargando…

Targeting Multidrug-Resistant Acinetobacter spp.: Sulbactam and the Diazabicyclooctenone β-Lactamase Inhibitor ETX2514 as a Novel Therapeutic Agent

Multidrug-resistant (MDR) Acinetobacter spp. poses a significant therapeutic challenge in part due to the presence of chromosomally encoded β-lactamases, including class C Acinetobacter-derived cephalosporinases (ADC) and class D oxacillinases (OXA), as well as plasmid-mediated class A β-lactamases....

Descripción completa

Detalles Bibliográficos
Autores principales: Barnes, Melissa D., Kumar, Vijay, Bethel, Christopher R., Moussa, Samir H., O’Donnell, John, Rutter, Joseph D., Good, Caryn E., Hujer, Kristine M., Hujer, Andrea M., Marshall, Steve H., Kreiswirth, Barry N., Richter, Sandra S., Rather, Philip N., Jacobs, Michael R., Papp-Wallace, Krisztina M., van den Akker, Focco, Bonomo, Robert A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6414696/
https://www.ncbi.nlm.nih.gov/pubmed/30862744
http://dx.doi.org/10.1128/mBio.00159-19
Descripción
Sumario:Multidrug-resistant (MDR) Acinetobacter spp. poses a significant therapeutic challenge in part due to the presence of chromosomally encoded β-lactamases, including class C Acinetobacter-derived cephalosporinases (ADC) and class D oxacillinases (OXA), as well as plasmid-mediated class A β-lactamases. Importantly, OXA-like β-lactamases represent a gap in the spectrum of inhibition by recently approved β-lactamase inhibitors such as avibactam and vaborbactam. ETX2514 is a novel, rationally designed, diazabicyclooctenone inhibitor that effectively targets class A, C, and D β-lactamases. We show that addition of ETX2514 significantly increased the susceptibility of clinical Acinetobacter baumannii isolates to sulbactam. AdeB and AdeJ were identified to be key efflux constituents for ETX2514 in A. baumannii. The combination of sulbactam and ETX2514 was efficacious against A. baumannii carrying bla(TEM-1), bla(ADC-82), bla(OXA-23), and bla(OXA-66) in a neutropenic murine thigh infection model. We also show that, in vitro, ETX2514 inhibited ADC-7 (k(2)/K(i) 1.0 ± 0.1 × 10(6) M(−1) s(−1)) and OXA-58 (k(2)/K(i) 2.5 ± 0.3 × 10(5) M(−1) s(−1)). Cocrystallization of ETX2514 with OXA-24/40 revealed hydrogen bonding interactions between ETX2514 and residues R261, S219, and S128 of OXA-24/40 in addition to a chloride ion occupied in the active site. Further, the C3 methyl group of ETX2514 shifts the position of M223. In conclusion, the sulbactam-ETX2514 combination possesses a broadened inhibitory range to include class D β-lactamases as well as class A and C β-lactamases and is a promising therapeutic candidate for infections caused by MDR Acinetobacter spp.