Cargando…

Proteomics of the corpus callosum to identify novel factors involved in hypomyelinated Niemann-Pick Type C disease mice

Hypomyelination in the central nerves system (CNS) is one of the most obviously pathological features in Niemann-Pick Type C disease (NPC), which is a rare neurodegenerative disorder caused by mutations in the NPC intracellular cholesterol transporter 1 or 2 (Npc1 or Npc2). Npc1 plays key roles in b...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Fan, Guan, Yudong, Feng, Xiao, Rolfs, Arndt, Schlüter, Hartmut, Luo, Jiankai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6417209/
https://www.ncbi.nlm.nih.gov/pubmed/30866987
http://dx.doi.org/10.1186/s13041-019-0440-9
Descripción
Sumario:Hypomyelination in the central nerves system (CNS) is one of the most obviously pathological features in Niemann-Pick Type C disease (NPC), which is a rare neurodegenerative disorder caused by mutations in the NPC intracellular cholesterol transporter 1 or 2 (Npc1 or Npc2). Npc1 plays key roles in both neurons and oligodendrocytes during myelination, however, the linkage between the disturbed cholesterol transport and inhibited myelination is unrevealed. In this study, mass spectrometry (MS)-based differential quantitative proteomics was applied to compare protein composition in the corpus callosum between wild type (WT) and NPC mice. In total, 3009 proteins from both samples were identified, including myelin structural proteins, neuronal proteins, and astrocyte-specific proteins. In line to hypomyelination, our data revealed downregulation of myelin structural and indispensable proteins in Npc1 mutant mice. Notably, the reduced ceramide synthase 2 (Cers2), UDP glycosyltransferase 8 (Ugt8), and glycolipid transfer protein (Gltp) indicate the altered sphingolipid metabolism in the disease and the involvement of Gltp in myelination. The identification of most reported myelin structural proteins and proteins from other cell types advocates the use of the corpus callosum to investigate proteins in different cell types that regulate myelination. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13041-019-0440-9) contains supplementary material, which is available to authorized users.