Cargando…

Timing constraints of action potential evoked Ca(2+) current and transmitter release at a central nerve terminal

The waveform of presynaptic action potentials (APs) regulates the magnitude of Ca(2+) currents (I(Ca)) and neurotransmitter release. However, how APs control the timing of synaptic transmission remains unclear. Using the calyx of Held synapse, we find that Na(+) and K(+) channels affect the timing b...

Descripción completa

Detalles Bibliográficos
Autores principales: Chao, Owen Y., Yang, Yi-Mei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418091/
https://www.ncbi.nlm.nih.gov/pubmed/30872753
http://dx.doi.org/10.1038/s41598-019-41120-5
Descripción
Sumario:The waveform of presynaptic action potentials (APs) regulates the magnitude of Ca(2+) currents (I(Ca)) and neurotransmitter release. However, how APs control the timing of synaptic transmission remains unclear. Using the calyx of Held synapse, we find that Na(+) and K(+) channels affect the timing by changing the AP waveform. Specifically, the onset of I(Ca) depends on the repolarization but not depolarization rate of APs, being near the end of repolarization phase for narrow APs and advancing to the early repolarization phase for wide APs. Increasing AP amplitude has little effect on the activation but delays the peak time of I(Ca). Raising extracellular Ca(2+) concentration increases the amplitude of I(Ca) yet does not alter their onset timing. Developmental shortening of APs ensures I(Ca) as a tail current and faithful synaptic delay, which is particularly important at the physiological temperature (35 °C) as I(Ca) evoked by broad pseudo-APs can occur in the depolarization phase. The early onset of I(Ca) is more prominent at 35 °C than at 22 °C, likely resulting from a temperature-dependent shift in the activation threshold and accelerated gating kinetics of Ca(2+) channels. These results suggest that the timing of Ca(2+) influx depends on the AP waveform dictated by voltage-gated channels and temperature.