Cargando…

Multi‐omics identify xanthine as a pro‐survival metabolite for nematodes with mitochondrial dysfunction

Aberrant mitochondrial function contributes to the pathogenesis of various metabolic and chronic disorders. Inhibition of insulin/IGF‐1 signaling (IIS) represents a promising avenue for the treatment of mitochondrial diseases, although many of the molecular mechanisms underlying this beneficial effe...

Descripción completa

Detalles Bibliográficos
Autores principales: Gioran, Anna, Piazzesi, Antonia, Bertan, Fabio, Schroer, Jonas, Wischhof, Lena, Nicotera, Pierluigi, Bano, Daniele
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418696/
https://www.ncbi.nlm.nih.gov/pubmed/30796049
http://dx.doi.org/10.15252/embj.201899558
_version_ 1783403790122090496
author Gioran, Anna
Piazzesi, Antonia
Bertan, Fabio
Schroer, Jonas
Wischhof, Lena
Nicotera, Pierluigi
Bano, Daniele
author_facet Gioran, Anna
Piazzesi, Antonia
Bertan, Fabio
Schroer, Jonas
Wischhof, Lena
Nicotera, Pierluigi
Bano, Daniele
author_sort Gioran, Anna
collection PubMed
description Aberrant mitochondrial function contributes to the pathogenesis of various metabolic and chronic disorders. Inhibition of insulin/IGF‐1 signaling (IIS) represents a promising avenue for the treatment of mitochondrial diseases, although many of the molecular mechanisms underlying this beneficial effect remain elusive. Using an unbiased multi‐omics approach, we report here that IIS inhibition reduces protein synthesis and favors catabolism in mitochondrial deficient Caenorhabditis elegans. We unveil that the lifespan extension does not occur through the restoration of mitochondrial respiration, but as a consequence of an ATP‐saving metabolic rewiring that is associated with an evolutionarily conserved phosphoproteome landscape. Furthermore, we identify xanthine accumulation as a prominent downstream metabolic output of IIS inhibition. We provide evidence that supplementation of FDA‐approved xanthine derivatives is sufficient to promote fitness and survival of nematodes carrying mitochondrial lesions. Together, our data describe previously unknown molecular components of a metabolic network that can extend the lifespan of short‐lived mitochondrial mutant animals.
format Online
Article
Text
id pubmed-6418696
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-64186962019-03-27 Multi‐omics identify xanthine as a pro‐survival metabolite for nematodes with mitochondrial dysfunction Gioran, Anna Piazzesi, Antonia Bertan, Fabio Schroer, Jonas Wischhof, Lena Nicotera, Pierluigi Bano, Daniele EMBO J Articles Aberrant mitochondrial function contributes to the pathogenesis of various metabolic and chronic disorders. Inhibition of insulin/IGF‐1 signaling (IIS) represents a promising avenue for the treatment of mitochondrial diseases, although many of the molecular mechanisms underlying this beneficial effect remain elusive. Using an unbiased multi‐omics approach, we report here that IIS inhibition reduces protein synthesis and favors catabolism in mitochondrial deficient Caenorhabditis elegans. We unveil that the lifespan extension does not occur through the restoration of mitochondrial respiration, but as a consequence of an ATP‐saving metabolic rewiring that is associated with an evolutionarily conserved phosphoproteome landscape. Furthermore, we identify xanthine accumulation as a prominent downstream metabolic output of IIS inhibition. We provide evidence that supplementation of FDA‐approved xanthine derivatives is sufficient to promote fitness and survival of nematodes carrying mitochondrial lesions. Together, our data describe previously unknown molecular components of a metabolic network that can extend the lifespan of short‐lived mitochondrial mutant animals. John Wiley and Sons Inc. 2019-02-22 2019-03-15 /pmc/articles/PMC6418696/ /pubmed/30796049 http://dx.doi.org/10.15252/embj.201899558 Text en © 2019 The Authors. Published under the terms of the CC BY 4.0 license This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Articles
Gioran, Anna
Piazzesi, Antonia
Bertan, Fabio
Schroer, Jonas
Wischhof, Lena
Nicotera, Pierluigi
Bano, Daniele
Multi‐omics identify xanthine as a pro‐survival metabolite for nematodes with mitochondrial dysfunction
title Multi‐omics identify xanthine as a pro‐survival metabolite for nematodes with mitochondrial dysfunction
title_full Multi‐omics identify xanthine as a pro‐survival metabolite for nematodes with mitochondrial dysfunction
title_fullStr Multi‐omics identify xanthine as a pro‐survival metabolite for nematodes with mitochondrial dysfunction
title_full_unstemmed Multi‐omics identify xanthine as a pro‐survival metabolite for nematodes with mitochondrial dysfunction
title_short Multi‐omics identify xanthine as a pro‐survival metabolite for nematodes with mitochondrial dysfunction
title_sort multi‐omics identify xanthine as a pro‐survival metabolite for nematodes with mitochondrial dysfunction
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418696/
https://www.ncbi.nlm.nih.gov/pubmed/30796049
http://dx.doi.org/10.15252/embj.201899558
work_keys_str_mv AT giorananna multiomicsidentifyxanthineasaprosurvivalmetabolitefornematodeswithmitochondrialdysfunction
AT piazzesiantonia multiomicsidentifyxanthineasaprosurvivalmetabolitefornematodeswithmitochondrialdysfunction
AT bertanfabio multiomicsidentifyxanthineasaprosurvivalmetabolitefornematodeswithmitochondrialdysfunction
AT schroerjonas multiomicsidentifyxanthineasaprosurvivalmetabolitefornematodeswithmitochondrialdysfunction
AT wischhoflena multiomicsidentifyxanthineasaprosurvivalmetabolitefornematodeswithmitochondrialdysfunction
AT nicoterapierluigi multiomicsidentifyxanthineasaprosurvivalmetabolitefornematodeswithmitochondrialdysfunction
AT banodaniele multiomicsidentifyxanthineasaprosurvivalmetabolitefornematodeswithmitochondrialdysfunction