Cargando…
Evaluation of linear models and missing value imputation for the analysis of peptide-centric proteomics
BACKGROUND: Several methods to handle data generated from bottom-up proteomics via liquid chromatography-mass spectrometry, particularly for peptide-centric quantification dealing with post-translational modification (PTM) analysis like reversible cysteine oxidation are evaluated. The paper proposes...
Autores principales: | Berg, Philip, McConnell, Evan W., Hicks, Leslie M., Popescu, Sorina C., Popescu, George V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6419331/ https://www.ncbi.nlm.nih.gov/pubmed/30871482 http://dx.doi.org/10.1186/s12859-019-2619-6 |
Ejemplares similares
-
Missing value imputation in high-dimensional phenomic data: imputable or not, and how?
por: Liao, Serena G, et al.
Publicado: (2014) -
A comparative study of evaluating missing value imputation methods in label-free proteomics
por: Jin, Liang, et al.
Publicado: (2021) -
Missing value imputation in proximity extension assay-based targeted proteomics data
por: Lenz, Michael, et al.
Publicado: (2020) -
Multiple Imputation Approaches Applied to the Missing Value Problem in Bottom-Up Proteomics
por: Gardner, Miranda L., et al.
Publicado: (2021) -
Missing value imputation for epistatic MAPs
por: Ryan, Colm, et al.
Publicado: (2010)