Cargando…
Nanosized food additives impact beneficial and pathogenic bacteria in the human gut: a simulated gastrointestinal study
Nanotechnology provides the food industry with new ways to modulate various aspects of food. Hence, engineered nanoparticles (NPs) are increasingly added to food and beverage products as functional ingredients. However, the impact of engineered as well as naturally occurring NPs on both commensal an...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6420113/ https://www.ncbi.nlm.nih.gov/pubmed/30882042 http://dx.doi.org/10.1038/s41538-018-0030-8 |
_version_ | 1783404059398504448 |
---|---|
author | Siemer, Svenja Hahlbrock, Angelina Vallet, Cecilia McClements, David Julian Balszuweit, Jan Voskuhl, Jens Docter, Dominic Wessler, Silja Knauer, Shirley K. Westmeier, Dana Stauber, Roland H. |
author_facet | Siemer, Svenja Hahlbrock, Angelina Vallet, Cecilia McClements, David Julian Balszuweit, Jan Voskuhl, Jens Docter, Dominic Wessler, Silja Knauer, Shirley K. Westmeier, Dana Stauber, Roland H. |
author_sort | Siemer, Svenja |
collection | PubMed |
description | Nanotechnology provides the food industry with new ways to modulate various aspects of food. Hence, engineered nanoparticles (NPs) are increasingly added to food and beverage products as functional ingredients. However, the impact of engineered as well as naturally occurring NPs on both commensal and pathogenic microorganisms within the gastrointestinal tract (GI) is not fully understood. Here, well-defined synthetic NPs and bacterial models were used to probe nanoparticle–bacteria interactions, from analytical to in situ to in vitro. NP–bacteria complexation occurred most efficiently for small NPs, independent of their core material or surface charge, but could be reduced by NPs’ steric surface modifications. Adsorption to bacteria could also be demonstrated for naturally occurring carbon NPs isolated from beer. Complex formation affected the (patho)biological behavior of both the NPs and bacteria, including their cellular uptake into epithelial cells and phagocytes, pathogenic signaling pathways, and NP-induced cell toxicity. NP–bacteria complex formation was concentration-dependently reduced when the NPs became coated with biomolecule coronas with sequential simulation of first oral uptake and then the GI. However, efficient NP adsorption was restored when the pH was sufficiently low, such as in simulating the conditions of the stomach. Collectively, NP binding to enteric bacteria may impact their (patho)biology, particularly in the stomach. Nanosized-food additives as well as naturally occurring NPs may be exploited to (rationally) shape the microbiome. The information contained in this article should facilitate a “safe by design” strategy for the development and application of engineered NPs as functional foods ingredients. |
format | Online Article Text |
id | pubmed-6420113 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-64201132019-03-15 Nanosized food additives impact beneficial and pathogenic bacteria in the human gut: a simulated gastrointestinal study Siemer, Svenja Hahlbrock, Angelina Vallet, Cecilia McClements, David Julian Balszuweit, Jan Voskuhl, Jens Docter, Dominic Wessler, Silja Knauer, Shirley K. Westmeier, Dana Stauber, Roland H. NPJ Sci Food Article Nanotechnology provides the food industry with new ways to modulate various aspects of food. Hence, engineered nanoparticles (NPs) are increasingly added to food and beverage products as functional ingredients. However, the impact of engineered as well as naturally occurring NPs on both commensal and pathogenic microorganisms within the gastrointestinal tract (GI) is not fully understood. Here, well-defined synthetic NPs and bacterial models were used to probe nanoparticle–bacteria interactions, from analytical to in situ to in vitro. NP–bacteria complexation occurred most efficiently for small NPs, independent of their core material or surface charge, but could be reduced by NPs’ steric surface modifications. Adsorption to bacteria could also be demonstrated for naturally occurring carbon NPs isolated from beer. Complex formation affected the (patho)biological behavior of both the NPs and bacteria, including their cellular uptake into epithelial cells and phagocytes, pathogenic signaling pathways, and NP-induced cell toxicity. NP–bacteria complex formation was concentration-dependently reduced when the NPs became coated with biomolecule coronas with sequential simulation of first oral uptake and then the GI. However, efficient NP adsorption was restored when the pH was sufficiently low, such as in simulating the conditions of the stomach. Collectively, NP binding to enteric bacteria may impact their (patho)biology, particularly in the stomach. Nanosized-food additives as well as naturally occurring NPs may be exploited to (rationally) shape the microbiome. The information contained in this article should facilitate a “safe by design” strategy for the development and application of engineered NPs as functional foods ingredients. Nature Publishing Group UK 2018-12-04 /pmc/articles/PMC6420113/ /pubmed/30882042 http://dx.doi.org/10.1038/s41538-018-0030-8 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Siemer, Svenja Hahlbrock, Angelina Vallet, Cecilia McClements, David Julian Balszuweit, Jan Voskuhl, Jens Docter, Dominic Wessler, Silja Knauer, Shirley K. Westmeier, Dana Stauber, Roland H. Nanosized food additives impact beneficial and pathogenic bacteria in the human gut: a simulated gastrointestinal study |
title | Nanosized food additives impact beneficial and pathogenic bacteria in the human gut: a simulated gastrointestinal study |
title_full | Nanosized food additives impact beneficial and pathogenic bacteria in the human gut: a simulated gastrointestinal study |
title_fullStr | Nanosized food additives impact beneficial and pathogenic bacteria in the human gut: a simulated gastrointestinal study |
title_full_unstemmed | Nanosized food additives impact beneficial and pathogenic bacteria in the human gut: a simulated gastrointestinal study |
title_short | Nanosized food additives impact beneficial and pathogenic bacteria in the human gut: a simulated gastrointestinal study |
title_sort | nanosized food additives impact beneficial and pathogenic bacteria in the human gut: a simulated gastrointestinal study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6420113/ https://www.ncbi.nlm.nih.gov/pubmed/30882042 http://dx.doi.org/10.1038/s41538-018-0030-8 |
work_keys_str_mv | AT siemersvenja nanosizedfoodadditivesimpactbeneficialandpathogenicbacteriainthehumangutasimulatedgastrointestinalstudy AT hahlbrockangelina nanosizedfoodadditivesimpactbeneficialandpathogenicbacteriainthehumangutasimulatedgastrointestinalstudy AT valletcecilia nanosizedfoodadditivesimpactbeneficialandpathogenicbacteriainthehumangutasimulatedgastrointestinalstudy AT mcclementsdavidjulian nanosizedfoodadditivesimpactbeneficialandpathogenicbacteriainthehumangutasimulatedgastrointestinalstudy AT balszuweitjan nanosizedfoodadditivesimpactbeneficialandpathogenicbacteriainthehumangutasimulatedgastrointestinalstudy AT voskuhljens nanosizedfoodadditivesimpactbeneficialandpathogenicbacteriainthehumangutasimulatedgastrointestinalstudy AT docterdominic nanosizedfoodadditivesimpactbeneficialandpathogenicbacteriainthehumangutasimulatedgastrointestinalstudy AT wesslersilja nanosizedfoodadditivesimpactbeneficialandpathogenicbacteriainthehumangutasimulatedgastrointestinalstudy AT knauershirleyk nanosizedfoodadditivesimpactbeneficialandpathogenicbacteriainthehumangutasimulatedgastrointestinalstudy AT westmeierdana nanosizedfoodadditivesimpactbeneficialandpathogenicbacteriainthehumangutasimulatedgastrointestinalstudy AT stauberrolandh nanosizedfoodadditivesimpactbeneficialandpathogenicbacteriainthehumangutasimulatedgastrointestinalstudy |