Cargando…

Adaptive Target Birth Intensity Multi-Bernoulli Filter with Noise-Based Threshold

Adaptively modeling the target birth intensity while maintaining the filtering efficiency is a challenging issue in multi-target tracking (MTT). Generally, the target birth probability is predefined as a constant and only the target birth density is considered in existing adaptive birth models, resu...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Xiaolong, Ji, Hongbing, Liu, Long
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427438/
https://www.ncbi.nlm.nih.gov/pubmed/30841614
http://dx.doi.org/10.3390/s19051120
Descripción
Sumario:Adaptively modeling the target birth intensity while maintaining the filtering efficiency is a challenging issue in multi-target tracking (MTT). Generally, the target birth probability is predefined as a constant and only the target birth density is considered in existing adaptive birth models, resulting in deteriorated target tracking accuracy, especially in the target appearing cases. In addition, the existing adaptive birth models also give rise to a decline in operation efficiency on account of the extra birth modeling calculations. To properly adapt the real variation of the number of newborn targets and improve the multi-target tracking performance, a novel fast sequential Monte Carlo (SMC) adaptive target birth intensity cardinality balanced multi-target multi-Bernoulli (CBMeMBer) filter is proposed in this paper. Through adaptively conducting the target birth probability in a pre-processing step, which incorporates the information of current measurements to correct the pre-setting of the target birth probability, the proposed filter can truly adapt target birth cases and achieve better tracking accuracy. Moreover, the implementation efficiency can be improved significantly by employing a measurement noise-based threshold in the likelihood calculations of the multi-target updating. Simulation results verify the effectiveness of the proposed filter.