Cargando…

A calcium transport mechanism for atrial fibrillation in Tbx5-mutant mice

Risk for Atrial Fibrillation (AF), the most common human arrhythmia, has a major genetic component. The T-box transcription factor TBX5 influences human AF risk, and adult-specific Tbx5-mutant mice demonstrate spontaneous AF. We report that TBX5 is critical for cellular Ca(2+) homeostasis, providing...

Descripción completa

Detalles Bibliográficos
Autores principales: Dai, Wenli, Laforest, Brigitte, Tyan, Leonid, Shen, Kaitlyn M, Nadadur, Rangarajan D, Alvarado, Francisco J, Mazurek, Stefan R, Lazarevic, Sonja, Gadek, Margaret, Wang, Yitang, Li, Ye, Valdivia, Hector H, Shen, Le, Broman, Michael T, Moskowitz, Ivan P, Weber, Christopher R
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428569/
https://www.ncbi.nlm.nih.gov/pubmed/30896405
http://dx.doi.org/10.7554/eLife.41814
_version_ 1783405420708102144
author Dai, Wenli
Laforest, Brigitte
Tyan, Leonid
Shen, Kaitlyn M
Nadadur, Rangarajan D
Alvarado, Francisco J
Mazurek, Stefan R
Lazarevic, Sonja
Gadek, Margaret
Wang, Yitang
Li, Ye
Valdivia, Hector H
Shen, Le
Broman, Michael T
Moskowitz, Ivan P
Weber, Christopher R
author_facet Dai, Wenli
Laforest, Brigitte
Tyan, Leonid
Shen, Kaitlyn M
Nadadur, Rangarajan D
Alvarado, Francisco J
Mazurek, Stefan R
Lazarevic, Sonja
Gadek, Margaret
Wang, Yitang
Li, Ye
Valdivia, Hector H
Shen, Le
Broman, Michael T
Moskowitz, Ivan P
Weber, Christopher R
author_sort Dai, Wenli
collection PubMed
description Risk for Atrial Fibrillation (AF), the most common human arrhythmia, has a major genetic component. The T-box transcription factor TBX5 influences human AF risk, and adult-specific Tbx5-mutant mice demonstrate spontaneous AF. We report that TBX5 is critical for cellular Ca(2+) homeostasis, providing a molecular mechanism underlying the genetic implication of TBX5 in AF. We show that cardiomyocyte action potential (AP) abnormalities in Tbx5-deficient atrial cardiomyocytes are caused by a decreased sarcoplasmic reticulum (SR) Ca(2+) ATPase (SERCA2)-mediated SR calcium uptake which was balanced by enhanced trans-sarcolemmal calcium fluxes (calcium current and sodium/calcium exchanger), providing mechanisms for triggered activity. The AP defects, cardiomyocyte ectopy, and AF caused by TBX5 deficiency were rescued by phospholamban removal, which normalized SERCA function. These results directly link transcriptional control of SERCA2 activity, depressed SR Ca(2+) sequestration, enhanced trans-sarcolemmal calcium fluxes, and AF, establishing a mechanism underlying the genetic basis for a Ca(2+)-dependent pathway for AF risk.
format Online
Article
Text
id pubmed-6428569
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-64285692019-03-25 A calcium transport mechanism for atrial fibrillation in Tbx5-mutant mice Dai, Wenli Laforest, Brigitte Tyan, Leonid Shen, Kaitlyn M Nadadur, Rangarajan D Alvarado, Francisco J Mazurek, Stefan R Lazarevic, Sonja Gadek, Margaret Wang, Yitang Li, Ye Valdivia, Hector H Shen, Le Broman, Michael T Moskowitz, Ivan P Weber, Christopher R eLife Human Biology and Medicine Risk for Atrial Fibrillation (AF), the most common human arrhythmia, has a major genetic component. The T-box transcription factor TBX5 influences human AF risk, and adult-specific Tbx5-mutant mice demonstrate spontaneous AF. We report that TBX5 is critical for cellular Ca(2+) homeostasis, providing a molecular mechanism underlying the genetic implication of TBX5 in AF. We show that cardiomyocyte action potential (AP) abnormalities in Tbx5-deficient atrial cardiomyocytes are caused by a decreased sarcoplasmic reticulum (SR) Ca(2+) ATPase (SERCA2)-mediated SR calcium uptake which was balanced by enhanced trans-sarcolemmal calcium fluxes (calcium current and sodium/calcium exchanger), providing mechanisms for triggered activity. The AP defects, cardiomyocyte ectopy, and AF caused by TBX5 deficiency were rescued by phospholamban removal, which normalized SERCA function. These results directly link transcriptional control of SERCA2 activity, depressed SR Ca(2+) sequestration, enhanced trans-sarcolemmal calcium fluxes, and AF, establishing a mechanism underlying the genetic basis for a Ca(2+)-dependent pathway for AF risk. eLife Sciences Publications, Ltd 2019-03-21 /pmc/articles/PMC6428569/ /pubmed/30896405 http://dx.doi.org/10.7554/eLife.41814 Text en © 2019, Dai et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Human Biology and Medicine
Dai, Wenli
Laforest, Brigitte
Tyan, Leonid
Shen, Kaitlyn M
Nadadur, Rangarajan D
Alvarado, Francisco J
Mazurek, Stefan R
Lazarevic, Sonja
Gadek, Margaret
Wang, Yitang
Li, Ye
Valdivia, Hector H
Shen, Le
Broman, Michael T
Moskowitz, Ivan P
Weber, Christopher R
A calcium transport mechanism for atrial fibrillation in Tbx5-mutant mice
title A calcium transport mechanism for atrial fibrillation in Tbx5-mutant mice
title_full A calcium transport mechanism for atrial fibrillation in Tbx5-mutant mice
title_fullStr A calcium transport mechanism for atrial fibrillation in Tbx5-mutant mice
title_full_unstemmed A calcium transport mechanism for atrial fibrillation in Tbx5-mutant mice
title_short A calcium transport mechanism for atrial fibrillation in Tbx5-mutant mice
title_sort calcium transport mechanism for atrial fibrillation in tbx5-mutant mice
topic Human Biology and Medicine
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428569/
https://www.ncbi.nlm.nih.gov/pubmed/30896405
http://dx.doi.org/10.7554/eLife.41814
work_keys_str_mv AT daiwenli acalciumtransportmechanismforatrialfibrillationintbx5mutantmice
AT laforestbrigitte acalciumtransportmechanismforatrialfibrillationintbx5mutantmice
AT tyanleonid acalciumtransportmechanismforatrialfibrillationintbx5mutantmice
AT shenkaitlynm acalciumtransportmechanismforatrialfibrillationintbx5mutantmice
AT nadadurrangarajand acalciumtransportmechanismforatrialfibrillationintbx5mutantmice
AT alvaradofranciscoj acalciumtransportmechanismforatrialfibrillationintbx5mutantmice
AT mazurekstefanr acalciumtransportmechanismforatrialfibrillationintbx5mutantmice
AT lazarevicsonja acalciumtransportmechanismforatrialfibrillationintbx5mutantmice
AT gadekmargaret acalciumtransportmechanismforatrialfibrillationintbx5mutantmice
AT wangyitang acalciumtransportmechanismforatrialfibrillationintbx5mutantmice
AT liye acalciumtransportmechanismforatrialfibrillationintbx5mutantmice
AT valdiviahectorh acalciumtransportmechanismforatrialfibrillationintbx5mutantmice
AT shenle acalciumtransportmechanismforatrialfibrillationintbx5mutantmice
AT bromanmichaelt acalciumtransportmechanismforatrialfibrillationintbx5mutantmice
AT moskowitzivanp acalciumtransportmechanismforatrialfibrillationintbx5mutantmice
AT weberchristopherr acalciumtransportmechanismforatrialfibrillationintbx5mutantmice
AT daiwenli calciumtransportmechanismforatrialfibrillationintbx5mutantmice
AT laforestbrigitte calciumtransportmechanismforatrialfibrillationintbx5mutantmice
AT tyanleonid calciumtransportmechanismforatrialfibrillationintbx5mutantmice
AT shenkaitlynm calciumtransportmechanismforatrialfibrillationintbx5mutantmice
AT nadadurrangarajand calciumtransportmechanismforatrialfibrillationintbx5mutantmice
AT alvaradofranciscoj calciumtransportmechanismforatrialfibrillationintbx5mutantmice
AT mazurekstefanr calciumtransportmechanismforatrialfibrillationintbx5mutantmice
AT lazarevicsonja calciumtransportmechanismforatrialfibrillationintbx5mutantmice
AT gadekmargaret calciumtransportmechanismforatrialfibrillationintbx5mutantmice
AT wangyitang calciumtransportmechanismforatrialfibrillationintbx5mutantmice
AT liye calciumtransportmechanismforatrialfibrillationintbx5mutantmice
AT valdiviahectorh calciumtransportmechanismforatrialfibrillationintbx5mutantmice
AT shenle calciumtransportmechanismforatrialfibrillationintbx5mutantmice
AT bromanmichaelt calciumtransportmechanismforatrialfibrillationintbx5mutantmice
AT moskowitzivanp calciumtransportmechanismforatrialfibrillationintbx5mutantmice
AT weberchristopherr calciumtransportmechanismforatrialfibrillationintbx5mutantmice