Cargando…

Stability Analysis of Multi Process Parameters for Metal-Organic Chemical Vapor Deposition Reaction Cavity

The parameters for metal-organic chemical vapor deposition (MOCVD) processes significantly influence the properties of ZnO films, especially the flow stability of the chamber, which is caused by process parameters such as the shape of reaction chamber, the working pressure, the growth temperature, t...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Jian, Wu, Ziling, Xu, Yifeng, Pei, Yanli, Wang, Gang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6429165/
https://www.ncbi.nlm.nih.gov/pubmed/30832241
http://dx.doi.org/10.3390/molecules24050876
Descripción
Sumario:The parameters for metal-organic chemical vapor deposition (MOCVD) processes significantly influence the properties of ZnO films, especially the flow stability of the chamber, which is caused by process parameters such as the shape of reaction chamber, the working pressure, the growth temperature, the susceptor rotational speed, the gas flow rate, and the nature of the carrier gas at inlet temperature. These parameters are the preconditions for the formation of high-quality film. Therefore, this study uses Ar as a carrier gas, diethylzinc (DEZn) as a Zn source, and H(2)O as an oxygen source and adopts the reaction mechanism calculated by quantum chemistry, which includes ten gas reactions and eight surface reactions. The process parameters of a specific reaction chamber model were analyzed based on the computational fluid dynamics method. This study also presents an accurate prediction of the flow regime in the reactor chamber under any operating conditions, without additional experiments, based on an analysis of a great quantity of simulation data. Such research is also significant for selecting the growth parameters relevant to production, providing a specific process growth window, narrowing the debugging scope, and providing a theoretical basis for the development of MOCVD equipment and process debugging.