Cargando…
Alevin efficiently estimates accurate gene abundances from dscRNA-seq data
We introduce alevin, a fast end-to-end pipeline to process droplet-based single-cell RNA sequencing data, performing cell barcode detection, read mapping, unique molecular identifier (UMI) deduplication, gene count estimation, and cell barcode whitelisting. Alevin’s approach to UMI deduplication con...
Autores principales: | Srivastava, Avi, Malik, Laraib, Smith, Tom, Sudbery, Ian, Patro, Rob |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6437997/ https://www.ncbi.nlm.nih.gov/pubmed/30917859 http://dx.doi.org/10.1186/s13059-019-1670-y |
Ejemplares similares
-
A Bayesian framework for inter-cellular information sharing improves dscRNA-seq quantification
por: Srivastava, Avi, et al.
Publicado: (2020) -
Minnow: a principled framework for rapid simulation of dscRNA-seq data at the read level
por: Sarkar, Hirak, et al.
Publicado: (2019) -
scSNV: accurate dscRNA-seq SNV co-expression analysis using duplicate tag collapsing
por: Wilson, Gavin W., et al.
Publicado: (2021) -
Alevin-fry unlocks rapid, accurate, and memory-frugal quantification of single-cell RNA-seq data
por: He, Dongze, et al.
Publicado: (2022) -
Alignment and mapping methodology influence transcript abundance estimation
por: Srivastava, Avi, et al.
Publicado: (2020)