Cargando…
Development and effects of tacrolimus-loaded nanoparticles on the inhibition of corneal allograft rejection
Tacrolimus has been widely applied to prevent organ rejection after transplantation. However, the conventional pharmaceutical formulation of tacrolimus limits its applications in ocular therapy due to its hydrophobicity and low corneal penetrability. We optimized tacrolimus-loaded methoxy poly (ethy...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6442111/ https://www.ncbi.nlm.nih.gov/pubmed/30895841 http://dx.doi.org/10.1080/10717544.2019.1582728 |
_version_ | 1783407648164544512 |
---|---|
author | Wu, Qianni Liu, Dong Zhang, Xulin Wang, Dongni DongYe, Meimei Chen, Wan Lin, Duoru Zhu, Fangming Chen, Weirong Lin, Haotian |
author_facet | Wu, Qianni Liu, Dong Zhang, Xulin Wang, Dongni DongYe, Meimei Chen, Wan Lin, Duoru Zhu, Fangming Chen, Weirong Lin, Haotian |
author_sort | Wu, Qianni |
collection | PubMed |
description | Tacrolimus has been widely applied to prevent organ rejection after transplantation. However, the conventional pharmaceutical formulation of tacrolimus limits its applications in ocular therapy due to its hydrophobicity and low corneal penetrability. We optimized tacrolimus-loaded methoxy poly (ethylene glycol-block-poly (d, l)-lactic-co-glycolic acid) nanoparticles (TAC-NPs) by simple and effective nanotechnology as a drug delivery system for corneal graft rejection to overcome these drawbacks. The prepared TAC-NPs were 82.9 ± 1.3 nm in size, and the drug loading and encapsulation efficiency were 8.01 ± 0.23% and 80.10 ± 2.33%. Furthermore, New Zealand rabbits were used to analyze the single-dose pharmacokinetics of the TAC-NPs using high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). In rats with allogenic penetrating keratoplasty, the administration of TAC-NPs dispersion drops improved the TAC concentrations in the aqueous humor and cornea, consistent with a significantly higher effective inhibition of IL-2, IL-17, and VEGF expression compared with conventional 0.1% tacrolimus drops. Meanwhile, we also compared two different topical administration methods (including eye drop and subconjunctival injection) of TAC-NPs to maximize the sustained release characteristic of NPs. In summary, the small-sized TAC-NPs enhanced transcorneal permeation and absorption of TAC and more effectively inhibited corneal allograft rejection, which indicated that biodegradable polymeric nanomaterials-based drug delivery system had great potential for improving the clinical therapy efficacy of hydrophobic drugs. |
format | Online Article Text |
id | pubmed-6442111 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-64421112019-04-05 Development and effects of tacrolimus-loaded nanoparticles on the inhibition of corneal allograft rejection Wu, Qianni Liu, Dong Zhang, Xulin Wang, Dongni DongYe, Meimei Chen, Wan Lin, Duoru Zhu, Fangming Chen, Weirong Lin, Haotian Drug Deliv Research Article Tacrolimus has been widely applied to prevent organ rejection after transplantation. However, the conventional pharmaceutical formulation of tacrolimus limits its applications in ocular therapy due to its hydrophobicity and low corneal penetrability. We optimized tacrolimus-loaded methoxy poly (ethylene glycol-block-poly (d, l)-lactic-co-glycolic acid) nanoparticles (TAC-NPs) by simple and effective nanotechnology as a drug delivery system for corneal graft rejection to overcome these drawbacks. The prepared TAC-NPs were 82.9 ± 1.3 nm in size, and the drug loading and encapsulation efficiency were 8.01 ± 0.23% and 80.10 ± 2.33%. Furthermore, New Zealand rabbits were used to analyze the single-dose pharmacokinetics of the TAC-NPs using high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). In rats with allogenic penetrating keratoplasty, the administration of TAC-NPs dispersion drops improved the TAC concentrations in the aqueous humor and cornea, consistent with a significantly higher effective inhibition of IL-2, IL-17, and VEGF expression compared with conventional 0.1% tacrolimus drops. Meanwhile, we also compared two different topical administration methods (including eye drop and subconjunctival injection) of TAC-NPs to maximize the sustained release characteristic of NPs. In summary, the small-sized TAC-NPs enhanced transcorneal permeation and absorption of TAC and more effectively inhibited corneal allograft rejection, which indicated that biodegradable polymeric nanomaterials-based drug delivery system had great potential for improving the clinical therapy efficacy of hydrophobic drugs. Taylor & Francis 2019-03-21 /pmc/articles/PMC6442111/ /pubmed/30895841 http://dx.doi.org/10.1080/10717544.2019.1582728 Text en © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Wu, Qianni Liu, Dong Zhang, Xulin Wang, Dongni DongYe, Meimei Chen, Wan Lin, Duoru Zhu, Fangming Chen, Weirong Lin, Haotian Development and effects of tacrolimus-loaded nanoparticles on the inhibition of corneal allograft rejection |
title | Development and effects of tacrolimus-loaded nanoparticles on the inhibition of corneal allograft rejection |
title_full | Development and effects of tacrolimus-loaded nanoparticles on the inhibition of corneal allograft rejection |
title_fullStr | Development and effects of tacrolimus-loaded nanoparticles on the inhibition of corneal allograft rejection |
title_full_unstemmed | Development and effects of tacrolimus-loaded nanoparticles on the inhibition of corneal allograft rejection |
title_short | Development and effects of tacrolimus-loaded nanoparticles on the inhibition of corneal allograft rejection |
title_sort | development and effects of tacrolimus-loaded nanoparticles on the inhibition of corneal allograft rejection |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6442111/ https://www.ncbi.nlm.nih.gov/pubmed/30895841 http://dx.doi.org/10.1080/10717544.2019.1582728 |
work_keys_str_mv | AT wuqianni developmentandeffectsoftacrolimusloadednanoparticlesontheinhibitionofcornealallograftrejection AT liudong developmentandeffectsoftacrolimusloadednanoparticlesontheinhibitionofcornealallograftrejection AT zhangxulin developmentandeffectsoftacrolimusloadednanoparticlesontheinhibitionofcornealallograftrejection AT wangdongni developmentandeffectsoftacrolimusloadednanoparticlesontheinhibitionofcornealallograftrejection AT dongyemeimei developmentandeffectsoftacrolimusloadednanoparticlesontheinhibitionofcornealallograftrejection AT chenwan developmentandeffectsoftacrolimusloadednanoparticlesontheinhibitionofcornealallograftrejection AT linduoru developmentandeffectsoftacrolimusloadednanoparticlesontheinhibitionofcornealallograftrejection AT zhufangming developmentandeffectsoftacrolimusloadednanoparticlesontheinhibitionofcornealallograftrejection AT chenweirong developmentandeffectsoftacrolimusloadednanoparticlesontheinhibitionofcornealallograftrejection AT linhaotian developmentandeffectsoftacrolimusloadednanoparticlesontheinhibitionofcornealallograftrejection |