Cargando…

Exit Gluten-Free and Enter Low FODMAPs: A Novel Dietary Strategy to Reduce Gastrointestinal Symptoms in Athletes

Exercise-associated physiological disturbances alter gastrointestinal function and integrity. These alterations may increase susceptibility to dietary triggers, namely gluten and a family of short-chain carbohydrates known as FODMAPs (fermentable oligo-, di-, monosaccharides and polyols). A recent s...

Descripción completa

Detalles Bibliográficos
Autor principal: Lis, Dana M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6445805/
https://www.ncbi.nlm.nih.gov/pubmed/30671907
http://dx.doi.org/10.1007/s40279-018-01034-0
Descripción
Sumario:Exercise-associated physiological disturbances alter gastrointestinal function and integrity. These alterations may increase susceptibility to dietary triggers, namely gluten and a family of short-chain carbohydrates known as FODMAPs (fermentable oligo-, di-, monosaccharides and polyols). A recent surge in the popularity of gluten-free diets (GFDs) among athletes without celiac disease has been exacerbated by unsubstantiated commercial health claims and high-profile athletes citing this diet to be the secret to their success. Up to 41% of athletes at least partially adhere to a GFD diet, with the belief that gluten avoidance improves exercise performance and parameters influencing performance, particularly gastrointestinal symptoms (GIS). In contrast to these beliefs, seminal work investigating the effects of a GFD in athletes without celiac disease has demonstrated no beneficial effect of a GFD versus a gluten-containing diet on performance, gastrointestinal health, inflammation, or perceptual wellbeing. Interestingly, the subsequent reduction in FODMAPs concurrent with the elimination of gluten-containing grains may actually be the factors affecting GIS improvement, not gluten. Pre-existent in the gastrointestinal tract or ingested during exercise, the osmotic and gas-producing effects of variably absorbed FODMAPs may trigger or increase the magnitude of exercise-associated GIS. Research using FODMAP reduction to address gastrointestinal issues in clinically healthy athletes is emerging as a promising strategy to reduce exercise-associated GIS. Applied research and practitioners merging clinical and sports nutrition methods will be essential for the effective use of a low FODMAP approach to tackle the multifactorial nature of gastrointestinal disturbances in athletes.