Cargando…

Core Fucosylation of Maternal Milk N-Glycan Evokes B Cell Activation by Selectively Promoting the l-Fucose Metabolism of Gut Bifidobacterium spp. and Lactobacillus spp.

The maternal milk glycobiome is crucial for shaping the gut microbiota of infants. Although high core fucosylation catalyzed by fucosyltransferase 8 (Fut8) is a general feature of human milk glycoproteins, its role in the formation of a healthy microbiota has not been evaluated. In this study, we fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Ming, Bai, Yaqiang, Zhou, Jiaorui, Huang, Wei, Yan, Jingyu, Tao, Jia, Fan, Qingjie, Liu, Yang, Mei, Di, Yan, Qiulong, Yuan, Jieli, Malard, Patrice, Wang, Zhongfu, Gu, Jianguo, Tanigchi, Naoyuki, Li, Wenzhe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6445936/
https://www.ncbi.nlm.nih.gov/pubmed/30940702
http://dx.doi.org/10.1128/mBio.00128-19
Descripción
Sumario:The maternal milk glycobiome is crucial for shaping the gut microbiota of infants. Although high core fucosylation catalyzed by fucosyltransferase 8 (Fut8) is a general feature of human milk glycoproteins, its role in the formation of a healthy microbiota has not been evaluated. In this study, we found that the core-fucosylated N-glycans in milk of Chinese mothers selectively promoted the colonization of specific gut microbial groups, such as Bifidobacterium spp. and Lactobacillus spp. in their breast-fed infants during lactation. Compared with Fut8(+/+) (WT) mouse-fed neonates, the offspring fed by Fut8(+/−) maternal mice had a distinct gut microbial profile, which was featured by a significant reduction of Lactobacillus spp., Bacteroides spp., and Bifidobacterium spp. and increased abundance of members of the Lachnospiraceae NK4A136 group and Akkermansia spp. Moreover, these offspring mice showed a lower proportion of splenic CD19(+) CD69(+) B lymphocytes and attenuated humoral immune responses upon ovalbumin (OVA) immunization. In vitro studies demonstrated that the chemically synthesized core-fucosylated oligosaccharides possessed the ability to promote the growth of tested Bifidobacterium and Lactobacillus strains in minimal medium. The resulting L-fucose metabolites, lactate and 1,2-propanediol, could promote the activation of B cells via the B cell receptor (BCR)-mediated signaling pathway.