Cargando…

MGS-Fast: Metagenomic shotgun data fast annotation using microbial gene catalogs

BACKGROUND: Current methods used for annotating metagenomics shotgun sequencing (MGS) data rely on a computationally intensive and low-stringency approach of mapping each read to a generic database of proteins or reference microbial genomes. RESULTS: We developed MGS-Fast, an analysis approach for s...

Descripción completa

Detalles Bibliográficos
Autores principales: Brown, Stuart M, Chen, Hao, Hao, Yuhan, Laungani, Bobby P, Ali, Thahmina A, Dong, Changsu, Lijeron, Carlos, Kim, Baekdoo, Wultsch, Claudia, Pei, Zhiheng, Krampis, Konstantinos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6446249/
https://www.ncbi.nlm.nih.gov/pubmed/30942867
http://dx.doi.org/10.1093/gigascience/giz020
_version_ 1783408323097264128
author Brown, Stuart M
Chen, Hao
Hao, Yuhan
Laungani, Bobby P
Ali, Thahmina A
Dong, Changsu
Lijeron, Carlos
Kim, Baekdoo
Wultsch, Claudia
Pei, Zhiheng
Krampis, Konstantinos
author_facet Brown, Stuart M
Chen, Hao
Hao, Yuhan
Laungani, Bobby P
Ali, Thahmina A
Dong, Changsu
Lijeron, Carlos
Kim, Baekdoo
Wultsch, Claudia
Pei, Zhiheng
Krampis, Konstantinos
author_sort Brown, Stuart M
collection PubMed
description BACKGROUND: Current methods used for annotating metagenomics shotgun sequencing (MGS) data rely on a computationally intensive and low-stringency approach of mapping each read to a generic database of proteins or reference microbial genomes. RESULTS: We developed MGS-Fast, an analysis approach for shotgun whole-genome metagenomic data utilizing Bowtie2 DNA-DNA alignment of reads that is an alternative to using the integrated catalog of reference genes database of well-annotated genes compiled from human microbiome data. This method is rapid and provides high-stringency matches (>90% DNA sequence identity) of the metagenomics reads to genes with annotated functions. We demonstrate the use of this method with data from a study of liver disease and synthetic reads, and Human Microbiome Project shotgun data, to detect differentially abundant Kyoto Encyclopedia of Genes and Genomes gene functions in these experiments. This rapid annotation method is freely available as a Galaxy workflow within a Docker image. CONCLUSIONS: MGS-Fast can confidently transfer functional annotations from gene databases to metagenomic reads, with speed and accuracy.
format Online
Article
Text
id pubmed-6446249
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-64462492019-04-09 MGS-Fast: Metagenomic shotgun data fast annotation using microbial gene catalogs Brown, Stuart M Chen, Hao Hao, Yuhan Laungani, Bobby P Ali, Thahmina A Dong, Changsu Lijeron, Carlos Kim, Baekdoo Wultsch, Claudia Pei, Zhiheng Krampis, Konstantinos Gigascience Technical Note BACKGROUND: Current methods used for annotating metagenomics shotgun sequencing (MGS) data rely on a computationally intensive and low-stringency approach of mapping each read to a generic database of proteins or reference microbial genomes. RESULTS: We developed MGS-Fast, an analysis approach for shotgun whole-genome metagenomic data utilizing Bowtie2 DNA-DNA alignment of reads that is an alternative to using the integrated catalog of reference genes database of well-annotated genes compiled from human microbiome data. This method is rapid and provides high-stringency matches (>90% DNA sequence identity) of the metagenomics reads to genes with annotated functions. We demonstrate the use of this method with data from a study of liver disease and synthetic reads, and Human Microbiome Project shotgun data, to detect differentially abundant Kyoto Encyclopedia of Genes and Genomes gene functions in these experiments. This rapid annotation method is freely available as a Galaxy workflow within a Docker image. CONCLUSIONS: MGS-Fast can confidently transfer functional annotations from gene databases to metagenomic reads, with speed and accuracy. Oxford University Press 2019-04-03 /pmc/articles/PMC6446249/ /pubmed/30942867 http://dx.doi.org/10.1093/gigascience/giz020 Text en © The Author(s) 2019. Published by Oxford University Press. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Technical Note
Brown, Stuart M
Chen, Hao
Hao, Yuhan
Laungani, Bobby P
Ali, Thahmina A
Dong, Changsu
Lijeron, Carlos
Kim, Baekdoo
Wultsch, Claudia
Pei, Zhiheng
Krampis, Konstantinos
MGS-Fast: Metagenomic shotgun data fast annotation using microbial gene catalogs
title MGS-Fast: Metagenomic shotgun data fast annotation using microbial gene catalogs
title_full MGS-Fast: Metagenomic shotgun data fast annotation using microbial gene catalogs
title_fullStr MGS-Fast: Metagenomic shotgun data fast annotation using microbial gene catalogs
title_full_unstemmed MGS-Fast: Metagenomic shotgun data fast annotation using microbial gene catalogs
title_short MGS-Fast: Metagenomic shotgun data fast annotation using microbial gene catalogs
title_sort mgs-fast: metagenomic shotgun data fast annotation using microbial gene catalogs
topic Technical Note
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6446249/
https://www.ncbi.nlm.nih.gov/pubmed/30942867
http://dx.doi.org/10.1093/gigascience/giz020
work_keys_str_mv AT brownstuartm mgsfastmetagenomicshotgundatafastannotationusingmicrobialgenecatalogs
AT chenhao mgsfastmetagenomicshotgundatafastannotationusingmicrobialgenecatalogs
AT haoyuhan mgsfastmetagenomicshotgundatafastannotationusingmicrobialgenecatalogs
AT launganibobbyp mgsfastmetagenomicshotgundatafastannotationusingmicrobialgenecatalogs
AT alithahminaa mgsfastmetagenomicshotgundatafastannotationusingmicrobialgenecatalogs
AT dongchangsu mgsfastmetagenomicshotgundatafastannotationusingmicrobialgenecatalogs
AT lijeroncarlos mgsfastmetagenomicshotgundatafastannotationusingmicrobialgenecatalogs
AT kimbaekdoo mgsfastmetagenomicshotgundatafastannotationusingmicrobialgenecatalogs
AT wultschclaudia mgsfastmetagenomicshotgundatafastannotationusingmicrobialgenecatalogs
AT peizhiheng mgsfastmetagenomicshotgundatafastannotationusingmicrobialgenecatalogs
AT krampiskonstantinos mgsfastmetagenomicshotgundatafastannotationusingmicrobialgenecatalogs