Cargando…
Improving protein function prediction using protein sequence and GO-term similarities
MOTIVATION: Most automatic functional annotation methods assign Gene Ontology (GO) terms to proteins based on annotations of highly similar proteins. We advocate that proteins that are less similar are still informative. Also, despite their simplicity and structure, GO terms seem to be hard for comp...
Autores principales: | Makrodimitris, Stavros, van Ham, Roeland C H J, Reinders, Marcel J T |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6449755/ https://www.ncbi.nlm.nih.gov/pubmed/30169569 http://dx.doi.org/10.1093/bioinformatics/bty751 |
Ejemplares similares
-
A thorough analysis of the contribution of experimental, derived and sequence-based predicted protein-protein interactions for functional annotation of proteins
por: Makrodimitris, Stavros, et al.
Publicado: (2020) -
Metric learning on expression data for gene function prediction
por: Makrodimitris, Stavros, et al.
Publicado: (2020) -
Unsupervised protein embeddings outperform hand-crafted sequence and structure features at predicting molecular function
por: Villegas-Morcillo, Amelia, et al.
Publicado: (2020) -
Automatic Gene Function Prediction in the 2020’s
por: Makrodimitris, Stavros, et al.
Publicado: (2020) -
The Power of Universal Contextualized Protein Embeddings in
Cross-species Protein Function Prediction
por: van den Bent, Irene, et al.
Publicado: (2021)