Cargando…
Fusing gene expressions and transitive protein-protein interactions for inference of gene regulatory networks
BACKGROUND: Systematic fusion of multiple data sources for Gene Regulatory Networks (GRN) inference remains a key challenge in systems biology. We incorporate information from protein-protein interaction networks (PPIN) into the process of GRN inference from gene expression (GE) data. However, exist...
Autores principales: | Liu, Wenting, Rajapakse, Jagath C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6449891/ https://www.ncbi.nlm.nih.gov/pubmed/30953534 http://dx.doi.org/10.1186/s12918-019-0695-x |
Ejemplares similares
-
Graph embeddings on gene ontology annotations for protein–protein interaction prediction
por: Zhong, Xiaoshi, et al.
Publicado: (2020) -
Stability of building gene regulatory networks with sparse autoregressive models
por: Rajapakse, Jagath C, et al.
Publicado: (2011) -
Fused Regression for Multi-source Gene Regulatory Network Inference
por: Lam, Kari Y., et al.
Publicado: (2016) -
Gene Ontology Enrichment Improves Performances of Functional Similarity of Genes
por: Liu, Wenting, et al.
Publicado: (2018) -
Gene regulatory network inference using fused LASSO on multiple data sets
por: Omranian, Nooshin, et al.
Publicado: (2016)