Cargando…

Long noncoding RNA MALAT1 releases epigenetic silencing of HIV-1 replication by displacing the polycomb repressive complex 2 from binding to the LTR promoter

Long noncoding RNAs (lncRNAs) may either repress or activate HIV-1 replication and latency; however, specific mechanisms for their action are not always clear. In HIV-1 infected CD4(+) T cells, we performed RNA-Sequencing (RNA-Seq) analysis and discovered an up-regulation of MALAT1 (metastasis-assoc...

Descripción completa

Detalles Bibliográficos
Autores principales: Qu, Di, Sun, Wei-Wei, Li, Li, Ma, Li, Sun, Li, Jin, Xia, Li, Taisheng, Hou, Wei, Wang, Jian-Hua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6451131/
https://www.ncbi.nlm.nih.gov/pubmed/30788509
http://dx.doi.org/10.1093/nar/gkz117
Descripción
Sumario:Long noncoding RNAs (lncRNAs) may either repress or activate HIV-1 replication and latency; however, specific mechanisms for their action are not always clear. In HIV-1 infected CD4(+) T cells, we performed RNA-Sequencing (RNA-Seq) analysis and discovered an up-regulation of MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), an lncRNA previously described in cancer cells that associate with cancer pathogenesis. Moreover, we found that MALAT1 promoted HIV-1 transcription and infection, as its knockdown by CRISPR/Cas9 markedly reduced the HIV-1 long terminal repeat (LTR)-driven gene transcription and viral replication. Mechanistically, through an association with chromatin modulator polycomb repressive complex 2 (PRC2), MALAT1 detached the core component enhancer of zeste homolog 2 (EZH2) from binding with HIV-1 LTR promoter, and thus removed PRC2 complex-mediated methylation of histone H3 on lysine 27 (H3K27me3) and relieved epigenetic silencing of HIV-1 transcription. Moreover, the reactivation of HIV-1 stimulated with latency reversal agents (LRAs) induced MALAT1 expression in latently infected cells. Successful combination antiretroviral therapy (cART) was accompanied by significantly diminished MALAT1 expression in patients, suggesting a positive correlation of MALAT1 expression with HIV-1 replication. Our data have identified MALAT1 as a promoter of HIV-1 transcription, and suggested that MALAT1 may be targeted for the development of new therapeutics.