Cargando…

Validation of publicly-available software used in analyzing NGS data for HIV-1 drug resistance mutations and transmission networks in a Washington, DC, Cohort

The DC Cohort is an ongoing longitudinal observational study of persons living with HIV. To better understand HIV-1 drug resistance and potential transmission clusters among these participants, we performed targeted, paired-end next-generation sequencing (NGS) of protease, reverse transcriptase and...

Descripción completa

Detalles Bibliográficos
Autores principales: Jair, Kamwing, McCann, Chase D., Reed, Harrison, Castel, Amanda D., Pérez-Losada, Marcos, Wilbourn, Brittany, Greenberg, Alan E., Jordan, Jeanne A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6456221/
https://www.ncbi.nlm.nih.gov/pubmed/30964884
http://dx.doi.org/10.1371/journal.pone.0214820
Descripción
Sumario:The DC Cohort is an ongoing longitudinal observational study of persons living with HIV. To better understand HIV-1 drug resistance and potential transmission clusters among these participants, we performed targeted, paired-end next-generation sequencing (NGS) of protease, reverse transcriptase and integrase amplicons. We elected to use free, publicly-available software (HyDRA Web, Stanford HIVdb and HIV-TRACE) for data analyses so that laboratory personnel without extensive bioinformatics expertise could use it; making the approach accessible and affordable for labs worldwide. With more laboratories transitioning away from Sanger-based chemistries to NGS platforms, lower frequency drug resistance mutations (DRMs) can be detected, yet their clinical relevance is uncertain. We looked at the impact choice in cutoff percentage had on number of DRMs detected and found an inverse correlation between the two. Longitudinal studies will be needed to determine whether low frequency DRMs are an early indicator of emerging resistance. We successfully validated this pipeline against a commercial pipeline, and another free, publicly-available pipeline. RT DRM results from HyDRA Web were compared to both SmartGene and PASeq Web; using the Mantel test, R(2) values were 0.9332 (p<0.0001) and 0.9097 (p<0.0001), respectively. PR and IN DRM results from HyDRA Web were then compared with PASeq Web only; using the Mantel test, R(2) values were 0.9993 (p<0.0001) and 0.9765 (p<0.0001), respectively. Drug resistance was highest for the NRTI drug class and lowest for the PI drug class in this cohort. RT DRM interpretation reports from this pipeline were also highly correlative compared to SmartGene pipeline; using the Spearman’s Correlation, r(s) value was 0.97757 (p<0.0001). HIV-TRACE was used to identify potential transmission clusters to better understand potential linkages among an urban cohort of persons living with HIV; more individuals were male, of black race, with an HIV risk factor of either MSM or High-risk Heterosexual. Common DRMs existed among individuals within a cluster. In summary, we validated a comprehensive, easy-to-use and affordable NGS approach for tracking HIV-1 drug resistance and identifying potential transmission clusters within the community.