Cargando…
MRCNN: a deep learning model for regression of genome-wide DNA methylation
BACKGROUND: Determination of genome-wide DNA methylation is significant for both basic research and drug development. As a key epigenetic modification, this biochemical process can modulate gene expression to influence the cell differentiation which can possibly lead to cancer. Due to the involuted...
Autores principales: | Tian, Qi, Zou, Jianxiao, Tang, Jianxiong, Fang, Yuan, Yu, Zhongli, Fan, Shicai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6457069/ https://www.ncbi.nlm.nih.gov/pubmed/30967120 http://dx.doi.org/10.1186/s12864-019-5488-5 |
Ejemplares similares
-
A Hybrid Ensemble Approach for Identifying Robust Differentially Methylated Loci in Pan-Cancers
por: Tian, Qi, et al.
Publicado: (2019) -
PretiMeth: precise prediction models for DNA methylation based on single methylation mark
por: Tang, Jianxiong, et al.
Publicado: (2020) -
scMelody: An Enhanced Consensus-Based Clustering Model for Single-Cell Methylation Data by Reconstructing Cell-to-Cell Similarity
por: Tian, Qi, et al.
Publicado: (2022) -
GraphCpG: imputation of single-cell methylomes based on locus-aware neighboring subgraphs
por: Deng, Yuzhong, et al.
Publicado: (2023) -
A robust fuzzy rule based integrative feature selection strategy for gene expression data in TCGA
por: Fan, Shicai, et al.
Publicado: (2019)