Cargando…

Hyperosmotic Stress Initiates AMPK-Independent Autophagy and AMPK- and Autophagy-Independent Depletion of Thioredoxin 1 and Glyoxalase 2 in HT22 Nerve Cells

BACKGROUND: Hyperosmotic stress is an important pathophysiologic condition in diabetes, severe trauma, dehydration, infection, and ischemia. Furthermore, brain neuronal cells face hyperosmotic stress in ageing and Alzheimer's disease. Despite the enormous importance of knowing the homeostatic m...

Descripción completa

Detalles Bibliográficos
Autores principales: Dafre, Alcir Luiz, Schmitz, Ariana Ern, Maher, Pamela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458930/
https://www.ncbi.nlm.nih.gov/pubmed/31049129
http://dx.doi.org/10.1155/2019/2715810
_version_ 1783410114201387008
author Dafre, Alcir Luiz
Schmitz, Ariana Ern
Maher, Pamela
author_facet Dafre, Alcir Luiz
Schmitz, Ariana Ern
Maher, Pamela
author_sort Dafre, Alcir Luiz
collection PubMed
description BACKGROUND: Hyperosmotic stress is an important pathophysiologic condition in diabetes, severe trauma, dehydration, infection, and ischemia. Furthermore, brain neuronal cells face hyperosmotic stress in ageing and Alzheimer's disease. Despite the enormous importance of knowing the homeostatic mechanisms underlying the responses of nerve cells to hyperosmotic stress, this topic has been underrepresented in the literature. Recent evidence points to autophagy induction as a hallmark of hyperosmotic stress, which has been proposed to be controlled by mTOR inhibition as a consequence of AMPK activation. We previously showed that methylglyoxal induced a decrease in the antioxidant proteins thioredoxin 1 (Trx1) and glyoxalase 2 (Glo2), which was mediated by AMPK-dependent autophagy. Thus, we hypothesized that hyperosmotic stress would have the same effect. METHODS: HT22 hippocampal nerve cells were treated with NaCl (37, 75, or 150 mM), and the activation of the AMPK/mTOR pathway was investigated, as well as the levels of Trx1 and Glo2. To determine if autophagy was involved, the inhibitors bafilomycin (Baf) and chloroquine (CQ), as well as ATG5 siRNA, were used. To test for AMPK involvement, AMPK-deficient mouse embryonic fibroblasts (MEFs) were used. RESULTS: Hyperosmotic stress induced a clear increase in autophagy, which was demonstrated by a decrease in p62 and an increase in LC3 lipidation. AMPK phosphorylation, linked to a decrease in mTOR and S6 ribosomal protein phosphorylation, was also observed. Deletion of AMPK in MEFs did not prevent autophagy induction by hyperosmotic stress, as detected by decreased p62 and increased LC3 II, or mTOR inhibition, inferred by decreased phosphorylation of P70 S6 kinase and S6 ribosomal protein. These data indicating that AMPK was not involved in autophagy activation by hyperosmotic stress were supported by a decrease in p(S555)-ULK1, an AMPK phosphorylation site. Trx1 and Glo2 levels were decreased at 6 and 18 h after treatment with 150 mM NaCl. However, this decrease in Trx1 and Glo2 in HT22 cells was not prevented by autophagy inhibition by Baf, CQ, or ATG5 siRNA. AMPK-deficient MEFs under hyperosmotic stress presented the same Trx1 and Glo2 decrease as wild-type cells. CONCLUSION: Hyperosmotic stress induced AMPK activation, but this was not responsible for its effects on mTOR activity or autophagy induction. Moreover, the decrease in Trx1 and Glo2 induced by hyperosmotic stress was independent of both autophagy and AMPK activation.
format Online
Article
Text
id pubmed-6458930
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-64589302019-05-02 Hyperosmotic Stress Initiates AMPK-Independent Autophagy and AMPK- and Autophagy-Independent Depletion of Thioredoxin 1 and Glyoxalase 2 in HT22 Nerve Cells Dafre, Alcir Luiz Schmitz, Ariana Ern Maher, Pamela Oxid Med Cell Longev Research Article BACKGROUND: Hyperosmotic stress is an important pathophysiologic condition in diabetes, severe trauma, dehydration, infection, and ischemia. Furthermore, brain neuronal cells face hyperosmotic stress in ageing and Alzheimer's disease. Despite the enormous importance of knowing the homeostatic mechanisms underlying the responses of nerve cells to hyperosmotic stress, this topic has been underrepresented in the literature. Recent evidence points to autophagy induction as a hallmark of hyperosmotic stress, which has been proposed to be controlled by mTOR inhibition as a consequence of AMPK activation. We previously showed that methylglyoxal induced a decrease in the antioxidant proteins thioredoxin 1 (Trx1) and glyoxalase 2 (Glo2), which was mediated by AMPK-dependent autophagy. Thus, we hypothesized that hyperosmotic stress would have the same effect. METHODS: HT22 hippocampal nerve cells were treated with NaCl (37, 75, or 150 mM), and the activation of the AMPK/mTOR pathway was investigated, as well as the levels of Trx1 and Glo2. To determine if autophagy was involved, the inhibitors bafilomycin (Baf) and chloroquine (CQ), as well as ATG5 siRNA, were used. To test for AMPK involvement, AMPK-deficient mouse embryonic fibroblasts (MEFs) were used. RESULTS: Hyperosmotic stress induced a clear increase in autophagy, which was demonstrated by a decrease in p62 and an increase in LC3 lipidation. AMPK phosphorylation, linked to a decrease in mTOR and S6 ribosomal protein phosphorylation, was also observed. Deletion of AMPK in MEFs did not prevent autophagy induction by hyperosmotic stress, as detected by decreased p62 and increased LC3 II, or mTOR inhibition, inferred by decreased phosphorylation of P70 S6 kinase and S6 ribosomal protein. These data indicating that AMPK was not involved in autophagy activation by hyperosmotic stress were supported by a decrease in p(S555)-ULK1, an AMPK phosphorylation site. Trx1 and Glo2 levels were decreased at 6 and 18 h after treatment with 150 mM NaCl. However, this decrease in Trx1 and Glo2 in HT22 cells was not prevented by autophagy inhibition by Baf, CQ, or ATG5 siRNA. AMPK-deficient MEFs under hyperosmotic stress presented the same Trx1 and Glo2 decrease as wild-type cells. CONCLUSION: Hyperosmotic stress induced AMPK activation, but this was not responsible for its effects on mTOR activity or autophagy induction. Moreover, the decrease in Trx1 and Glo2 induced by hyperosmotic stress was independent of both autophagy and AMPK activation. Hindawi 2019-03-27 /pmc/articles/PMC6458930/ /pubmed/31049129 http://dx.doi.org/10.1155/2019/2715810 Text en Copyright © 2019 Alcir Luiz Dafre et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Dafre, Alcir Luiz
Schmitz, Ariana Ern
Maher, Pamela
Hyperosmotic Stress Initiates AMPK-Independent Autophagy and AMPK- and Autophagy-Independent Depletion of Thioredoxin 1 and Glyoxalase 2 in HT22 Nerve Cells
title Hyperosmotic Stress Initiates AMPK-Independent Autophagy and AMPK- and Autophagy-Independent Depletion of Thioredoxin 1 and Glyoxalase 2 in HT22 Nerve Cells
title_full Hyperosmotic Stress Initiates AMPK-Independent Autophagy and AMPK- and Autophagy-Independent Depletion of Thioredoxin 1 and Glyoxalase 2 in HT22 Nerve Cells
title_fullStr Hyperosmotic Stress Initiates AMPK-Independent Autophagy and AMPK- and Autophagy-Independent Depletion of Thioredoxin 1 and Glyoxalase 2 in HT22 Nerve Cells
title_full_unstemmed Hyperosmotic Stress Initiates AMPK-Independent Autophagy and AMPK- and Autophagy-Independent Depletion of Thioredoxin 1 and Glyoxalase 2 in HT22 Nerve Cells
title_short Hyperosmotic Stress Initiates AMPK-Independent Autophagy and AMPK- and Autophagy-Independent Depletion of Thioredoxin 1 and Glyoxalase 2 in HT22 Nerve Cells
title_sort hyperosmotic stress initiates ampk-independent autophagy and ampk- and autophagy-independent depletion of thioredoxin 1 and glyoxalase 2 in ht22 nerve cells
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458930/
https://www.ncbi.nlm.nih.gov/pubmed/31049129
http://dx.doi.org/10.1155/2019/2715810
work_keys_str_mv AT dafrealcirluiz hyperosmoticstressinitiatesampkindependentautophagyandampkandautophagyindependentdepletionofthioredoxin1andglyoxalase2inht22nervecells
AT schmitzarianaern hyperosmoticstressinitiatesampkindependentautophagyandampkandautophagyindependentdepletionofthioredoxin1andglyoxalase2inht22nervecells
AT maherpamela hyperosmoticstressinitiatesampkindependentautophagyandampkandautophagyindependentdepletionofthioredoxin1andglyoxalase2inht22nervecells