Cargando…
PEGylated and CD47-conjugated nanoellipsoidal artificial antigen-presenting cells minimize phagocytosis and augment anti-tumor T-cell responses
PURPOSE: Antigen-presenting cells (APCs) are powerful tools to expand antigen-specific T cells ex vivo and in vivo for tumor immunotherapy, but suffer from time-consuming generation and biosafety concerns raised by live cells. Alternatively, the cell-free artificial antigen-presenting cells (aAPCs)...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6459144/ https://www.ncbi.nlm.nih.gov/pubmed/31040669 http://dx.doi.org/10.2147/IJN.S195828 |
_version_ | 1783410144229457920 |
---|---|
author | Song, Shilong Jin, Xiaoxiao Zhang, Lei Zhao, Chen Ding, Yan Ang, Qianqian Khaidav, Odontuya Shen, Chuanlai |
author_facet | Song, Shilong Jin, Xiaoxiao Zhang, Lei Zhao, Chen Ding, Yan Ang, Qianqian Khaidav, Odontuya Shen, Chuanlai |
author_sort | Song, Shilong |
collection | PubMed |
description | PURPOSE: Antigen-presenting cells (APCs) are powerful tools to expand antigen-specific T cells ex vivo and in vivo for tumor immunotherapy, but suffer from time-consuming generation and biosafety concerns raised by live cells. Alternatively, the cell-free artificial antigen-presenting cells (aAPCs) have been rapidly developed. Nanoscale aAPCs are recently proposed owing to their superior biodistribution and reduced embolism than conventional cell-sized aAPCs, but pose the challenges: easier cellular uptake and smaller contact surface area with T cells than the cell-sized counterparts. This study aimed to fabricate a new “stealth” nano-aAPCs with microscale contact surface area to minimize cellular uptake and activate antigen-specific T cells by combination uses of ellipsoidal stretch, PEGylation, and self-marker CD47-Fc conjugation. METHODS: The spherical polylactic-co-glycolic acid nanoparticles were fabricated using a double-emulsion method, and then stretched twofold using film-stretching procedure followed by PEGylation and co-coupling with CD47-Fc, H-2K(b)/TRP2(180-188)-Ig dimers, and anti-CD28. The resulting PEGylated and CD47-conjugated nanoellipsoidal aAPCs (EaAPC(PEG/CD47)) were co-cultured with macrophages or spleen lymphocytes and also infused into melanoma-bearing mice. The in vitro and in vivo effects were evaluated and compared with the nanospherical aAPCs (SaAPC), nanoellipsoidal aAPCs (EaAPC), or PEGylated nanoellipsoidal aAPC (EaAPC(PEG)). RESULTS: EaAPC(PEG/CD47) markedly reduced cellular uptake in vitro and in vivo, as compared with EaAPC(PEG), EaAPC, SaAPC, and Blank-NPs and expanded naïve TRP2(180-188)-specific CD8(+) T cells in the co-cultures with spleen lymphocytes. After three infusions, the EaAPC(PEG/CD47) showed much stronger effects on facilitating TRP2(180-188)-specific CD8(+) T-cell proliferation, local infiltration, and tumor necrosis in the melanoma-bearing mice and on inhibiting tumor growth than the control aAPCs. CONCLUSION: The superimposed or synergistic effects of ellipsoidal stretch, PEGylation, and CD47-Fc conjugation minimized cellular uptake of nano-aAPCs and enhanced their functionality to expand antigen-specific T cells and inhibit tumor growth, thus suggesting a more valuable strategy to design “stealth” nanoscale aAPCs suitable for tumor active immunotherapy. |
format | Online Article Text |
id | pubmed-6459144 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-64591442019-04-30 PEGylated and CD47-conjugated nanoellipsoidal artificial antigen-presenting cells minimize phagocytosis and augment anti-tumor T-cell responses Song, Shilong Jin, Xiaoxiao Zhang, Lei Zhao, Chen Ding, Yan Ang, Qianqian Khaidav, Odontuya Shen, Chuanlai Int J Nanomedicine Original Research PURPOSE: Antigen-presenting cells (APCs) are powerful tools to expand antigen-specific T cells ex vivo and in vivo for tumor immunotherapy, but suffer from time-consuming generation and biosafety concerns raised by live cells. Alternatively, the cell-free artificial antigen-presenting cells (aAPCs) have been rapidly developed. Nanoscale aAPCs are recently proposed owing to their superior biodistribution and reduced embolism than conventional cell-sized aAPCs, but pose the challenges: easier cellular uptake and smaller contact surface area with T cells than the cell-sized counterparts. This study aimed to fabricate a new “stealth” nano-aAPCs with microscale contact surface area to minimize cellular uptake and activate antigen-specific T cells by combination uses of ellipsoidal stretch, PEGylation, and self-marker CD47-Fc conjugation. METHODS: The spherical polylactic-co-glycolic acid nanoparticles were fabricated using a double-emulsion method, and then stretched twofold using film-stretching procedure followed by PEGylation and co-coupling with CD47-Fc, H-2K(b)/TRP2(180-188)-Ig dimers, and anti-CD28. The resulting PEGylated and CD47-conjugated nanoellipsoidal aAPCs (EaAPC(PEG/CD47)) were co-cultured with macrophages or spleen lymphocytes and also infused into melanoma-bearing mice. The in vitro and in vivo effects were evaluated and compared with the nanospherical aAPCs (SaAPC), nanoellipsoidal aAPCs (EaAPC), or PEGylated nanoellipsoidal aAPC (EaAPC(PEG)). RESULTS: EaAPC(PEG/CD47) markedly reduced cellular uptake in vitro and in vivo, as compared with EaAPC(PEG), EaAPC, SaAPC, and Blank-NPs and expanded naïve TRP2(180-188)-specific CD8(+) T cells in the co-cultures with spleen lymphocytes. After three infusions, the EaAPC(PEG/CD47) showed much stronger effects on facilitating TRP2(180-188)-specific CD8(+) T-cell proliferation, local infiltration, and tumor necrosis in the melanoma-bearing mice and on inhibiting tumor growth than the control aAPCs. CONCLUSION: The superimposed or synergistic effects of ellipsoidal stretch, PEGylation, and CD47-Fc conjugation minimized cellular uptake of nano-aAPCs and enhanced their functionality to expand antigen-specific T cells and inhibit tumor growth, thus suggesting a more valuable strategy to design “stealth” nanoscale aAPCs suitable for tumor active immunotherapy. Dove Medical Press 2019-04-08 /pmc/articles/PMC6459144/ /pubmed/31040669 http://dx.doi.org/10.2147/IJN.S195828 Text en © 2019 Song et al. This work is published and licensed by Dove Medical Press Limited The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. |
spellingShingle | Original Research Song, Shilong Jin, Xiaoxiao Zhang, Lei Zhao, Chen Ding, Yan Ang, Qianqian Khaidav, Odontuya Shen, Chuanlai PEGylated and CD47-conjugated nanoellipsoidal artificial antigen-presenting cells minimize phagocytosis and augment anti-tumor T-cell responses |
title | PEGylated and CD47-conjugated nanoellipsoidal artificial antigen-presenting cells minimize phagocytosis and augment anti-tumor T-cell responses |
title_full | PEGylated and CD47-conjugated nanoellipsoidal artificial antigen-presenting cells minimize phagocytosis and augment anti-tumor T-cell responses |
title_fullStr | PEGylated and CD47-conjugated nanoellipsoidal artificial antigen-presenting cells minimize phagocytosis and augment anti-tumor T-cell responses |
title_full_unstemmed | PEGylated and CD47-conjugated nanoellipsoidal artificial antigen-presenting cells minimize phagocytosis and augment anti-tumor T-cell responses |
title_short | PEGylated and CD47-conjugated nanoellipsoidal artificial antigen-presenting cells minimize phagocytosis and augment anti-tumor T-cell responses |
title_sort | pegylated and cd47-conjugated nanoellipsoidal artificial antigen-presenting cells minimize phagocytosis and augment anti-tumor t-cell responses |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6459144/ https://www.ncbi.nlm.nih.gov/pubmed/31040669 http://dx.doi.org/10.2147/IJN.S195828 |
work_keys_str_mv | AT songshilong pegylatedandcd47conjugatednanoellipsoidalartificialantigenpresentingcellsminimizephagocytosisandaugmentantitumortcellresponses AT jinxiaoxiao pegylatedandcd47conjugatednanoellipsoidalartificialantigenpresentingcellsminimizephagocytosisandaugmentantitumortcellresponses AT zhanglei pegylatedandcd47conjugatednanoellipsoidalartificialantigenpresentingcellsminimizephagocytosisandaugmentantitumortcellresponses AT zhaochen pegylatedandcd47conjugatednanoellipsoidalartificialantigenpresentingcellsminimizephagocytosisandaugmentantitumortcellresponses AT dingyan pegylatedandcd47conjugatednanoellipsoidalartificialantigenpresentingcellsminimizephagocytosisandaugmentantitumortcellresponses AT angqianqian pegylatedandcd47conjugatednanoellipsoidalartificialantigenpresentingcellsminimizephagocytosisandaugmentantitumortcellresponses AT khaidavodontuya pegylatedandcd47conjugatednanoellipsoidalartificialantigenpresentingcellsminimizephagocytosisandaugmentantitumortcellresponses AT shenchuanlai pegylatedandcd47conjugatednanoellipsoidalartificialantigenpresentingcellsminimizephagocytosisandaugmentantitumortcellresponses |