Cargando…
SMYD2-OE promotes oxaliplatin resistance in colon cancer through MDR1/P-glycoprotein via MEK/ERK/AP1 pathway
BACKGROUND: SET and MYND domain-containing protein 2 (SMYD2-OE) plays an important role in cancer development through methylating histone and non-histone proteins. However, little is known about the relevance of SMYD2-OE in colon cancer. Moreover, oxaliplatin (L-OHP) is applied as first line for col...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6459156/ https://www.ncbi.nlm.nih.gov/pubmed/31040701 http://dx.doi.org/10.2147/OTT.S186806 |
Sumario: | BACKGROUND: SET and MYND domain-containing protein 2 (SMYD2-OE) plays an important role in cancer development through methylating histone and non-histone proteins. However, little is known about the relevance of SMYD2-OE in colon cancer. Moreover, oxaliplatin (L-OHP) is applied as first line for colon cancer chemotherapy, but drug resistance restricts its efficacy. Unexpectedly, the mechanism of L-OHP resistance in colon cancer remains unclear. In this study, we investigated the relationship of SMYD2-OE expression and L-OHP resistance in colon cancer and further explored the underlying mechanism linking SMYD2-OE, L-OHP resistance, and colon cancer. MATERIALS AND METHODS: Expression levels of SMYD2-OE in colon cancer tissues of patients were tested. In vitro and in vivo assays were conducted to explore the function and mechanism of SMYD2-OE in colon cancer sensitivity to L-OHP. RESULTS: SMYD2-OE was overexpressed in colon cancer tissues compared with non-neoplastic tissues and associated with poor prognosis of patients with colon cancer after L-OHP-based chemotherapy. Knockdown of SMYD2-OE increased colon cancer sensitivity to L-OHP in vitro and in vivo. However, SMYD2-OE overexpression promoted L-OHP resistance in colon cancer cell in vitro. In addition, SMYD2-OE could upregulate MDR1/P-glycoprotein expression depending on MEK/ERK/AP-1 signaling pathway activity. CONCLUSION: These results imply that SMYD2-OE promotes L-OHP resistance in colon cancer by regulating MDR1/P-glycoprotein through MEK/ERK/AP-1 signaling pathway, providing a potential strategy to sensitize chemotherapy by SMYD2-OE knockdown in colon cancer treatment. |
---|