Cargando…
Inferring rates of metastatic dissemination using stochastic network models
The formation of metastases is driven by the ability of cancer cells to disseminate from the site of the primary tumour to target organs. The process of dissemination is constrained by anatomical features such as the flow of blood and lymph in the circulatory system. We exploit this fact in a stocha...
Autores principales: | Gerlee, Philip, Johansson, Mia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6459558/ https://www.ncbi.nlm.nih.gov/pubmed/30933969 http://dx.doi.org/10.1371/journal.pcbi.1006868 |
Ejemplares similares
-
Model-based inference of metastatic seeding rates in de novo metastatic breast cancer reveals the impact of secondary seeding and molecular subtype
por: Vitos, Noemi, et al.
Publicado: (2022) -
Inference of glioblastoma migration and proliferation rates using single time-point images
por: Rosén, Emil, et al.
Publicado: (2023) -
Fast and precise inference on diffusivity in interacting particle systems
por: Lindwall, Gustav, et al.
Publicado: (2023) -
Detecting drought regulators using stochastic inference in Bayesian networks
por: Lahiri, Aditya, et al.
Publicado: (2021) -
Stochastic epidemic models with inference
por: Britton, Tom, et al.
Publicado: (2019)