Cargando…
Intracerebral EEG Artifact Identification Using Convolutional Neural Networks
Manual and semi-automatic identification of artifacts and unwanted physiological signals in large intracerebral electroencephalographic (iEEG) recordings is time consuming and inaccurate. To date, unsupervised methods to accurately detect iEEG artifacts are not available. This study introduces a nov...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6459786/ https://www.ncbi.nlm.nih.gov/pubmed/30105544 http://dx.doi.org/10.1007/s12021-018-9397-6 |