Cargando…
Intracerebral EEG Artifact Identification Using Convolutional Neural Networks
Manual and semi-automatic identification of artifacts and unwanted physiological signals in large intracerebral electroencephalographic (iEEG) recordings is time consuming and inaccurate. To date, unsupervised methods to accurately detect iEEG artifacts are not available. This study introduces a nov...
Autores principales: | Nejedly, Petr, Cimbalnik, Jan, Klimes, Petr, Plesinger, Filip, Halamek, Josef, Kremen, Vaclav, Viscor, Ivo, Brinkmann, Benjamin H., Pail, Martin, Brazdil, Milan, Worrell, Gregory, Jurak, Pavel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6459786/ https://www.ncbi.nlm.nih.gov/pubmed/30105544 http://dx.doi.org/10.1007/s12021-018-9397-6 |
Ejemplares similares
-
Multicenter intracranial EEG dataset for classification of graphoelements and artifactual signals
por: Nejedly, Petr, et al.
Publicado: (2020) -
Exploiting Graphoelements and Convolutional Neural Networks with Long Short Term Memory for Classification of the Human Electroencephalogram
por: Nejedly, P., et al.
Publicado: (2019) -
Utilization of temporal autoencoder for semi-supervised intracranial EEG clustering and classification
por: Nejedly, Petr, et al.
Publicado: (2023) -
Shadows of very high-frequency oscillations can be detected in lower frequency bands of routine stereoelectroencephalography
por: Vasickova, Zuzana, et al.
Publicado: (2023) -
Interictal invasive very high-frequency oscillations in resting awake state and sleep
por: Revajová, Karin, et al.
Publicado: (2023)