Cargando…
Extensive deep neural networks for transferring small scale learning to large scale systems
We present a physically-motivated topology of a deep neural network that can efficiently infer extensive parameters (such as energy, entropy, or number of particles) of arbitrarily large systems, doing so with [Image: see text] scaling. We use a form of domain decomposition for training and inferenc...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6460955/ https://www.ncbi.nlm.nih.gov/pubmed/31015950 http://dx.doi.org/10.1039/c8sc04578j |