Cargando…
Extensive deep neural networks for transferring small scale learning to large scale systems
We present a physically-motivated topology of a deep neural network that can efficiently infer extensive parameters (such as energy, entropy, or number of particles) of arbitrarily large systems, doing so with [Image: see text] scaling. We use a form of domain decomposition for training and inferenc...
Autores principales: | Mills, Kyle, Ryczko, Kevin, Luchak, Iryna, Domurad, Adam, Beeler, Chris, Tamblyn, Isaac |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6460955/ https://www.ncbi.nlm.nih.gov/pubmed/31015950 http://dx.doi.org/10.1039/c8sc04578j |
Ejemplares similares
-
Multiple Phenotypic Changes Associated with Large-Scale Horizontal Gene Transfer
por: Dougherty, Kevin, et al.
Publicado: (2014) -
Large-scale dynamics of horizontal transfers
por: Grassi, Luigi, et al.
Publicado: (2012) -
Spatial information in large-scale neural recordings
por: Cybulski, Thaddeus R., et al.
Publicado: (2015) -
Deep PPG: Large-Scale Heart Rate Estimation with Convolutional Neural Networks
por: Reiss, Attila, et al.
Publicado: (2019) -
Deep convolutional and conditional neural networks for large-scale genomic data generation
por: Yelmen, Burak, et al.
Publicado: (2023)