Cargando…

Endothelial cells secreted endothelin-1 augments diabetic nephropathy via inducing extracellular matrix accumulation of mesangial cells in ETBR(-/-) mice

Endothelin B receptor (ETBR) deficiency may contribute to the progression of diabetic nephropathy (DN) in a streptozotocin (STZ) model, but the underlying mechanism is not fully revealed. In this study, STZ-diabetic ETBR(-/-) mice was characterized by increased serum creatinine and urinary albumin,...

Descripción completa

Detalles Bibliográficos
Autores principales: Zou, Hong-hong, Wang, Li, Zheng, Xiao-xu, Xu, Gao-si, Shen, Yunfeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6461170/
https://www.ncbi.nlm.nih.gov/pubmed/30926764
http://dx.doi.org/10.18632/aging.101875
Descripción
Sumario:Endothelin B receptor (ETBR) deficiency may contribute to the progression of diabetic nephropathy (DN) in a streptozotocin (STZ) model, but the underlying mechanism is not fully revealed. In this study, STZ-diabetic ETBR(-/-) mice was characterized by increased serum creatinine and urinary albumin, enhanced glomerulosclerosis, and upregulated ET-1 expression compared with STZ-diabetic WT mice. In vitro, HG conditioned media (CM) of ETBR(-/-) GENs promoted mesangial cell proliferation and upregulated ECM-related proteins, and ET-1 knockout in GENs or inhibition of ET-1/ETAR in mesangial cell suppressed mesangial cell proliferation and collagen IV formation. In addition, ET-1 was over-expressed in ETBR(-/-) GENs and was regulated by NF-kapapB pathway. ET-1/ETBR suppressed NF-kappaB to modulate ET-1 in GENs. Furthermore, ET-1/ETAR promoted RhoA/ROCK pathway in mesangial cells, and accelerated mesangial cell proliferation and ECM accumulation. Finally, in vivo experiments proved inhibition of NF-kappaB pathway ameliorated DN in ETBR(-/-) mice. These results suggest that in HG-exposed ETBR(-/-) GENs, suppression of ET-1 binding to ETBR activated NF-kappaB pathway, thus to secrete large amount of ET-1. Due to the communication between GENs and mesangial cells in diabetes, ET-1 binding to ETAR in mesangial cell promoted RhoA/ROCK pathway, thus to accelerate mesangial cell proliferation and ECM accumulation.