Cargando…

Combined Treatment with Doxorubicin and Rapamycin Is Effective against In Vitro and In Vivo Models of Human Glioblastoma

Despite numerous clinical trials, glioblastoma (GBM) remains a tumor that is difficult to treat. The aim of this study was to investigate the potential of a new pharmacological approach, combining doxorubicin (Dox) and rapamycin (Rapa), in in vitro and in vivo GBM models. Cytotoxic and anti-prolifer...

Descripción completa

Detalles Bibliográficos
Autores principales: Iorio, Anna Lisa, Da Ros, Martina, Pisano, Claudio, de Martino, Maurizio, Genitori, Lorenzo, Sardi, Iacopo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6462908/
https://www.ncbi.nlm.nih.gov/pubmed/30857276
http://dx.doi.org/10.3390/jcm8030331
Descripción
Sumario:Despite numerous clinical trials, glioblastoma (GBM) remains a tumor that is difficult to treat. The aim of this study was to investigate the potential of a new pharmacological approach, combining doxorubicin (Dox) and rapamycin (Rapa), in in vitro and in vivo GBM models. Cytotoxic and anti-proliferative effects of Rapa plus Dox treatments were analyzed in GBM cell lines. The in vivo effectiveness of these treatments was investigated in an orthotopic xenograft mice model of GBM. In vitro results demonstrated that prolonged exposure to Rapa sensitize GBM cells to Dox treatments. In vivo results demonstrated that Rapa (5 mg/kg) plus Dox (5 mg/kg) determined the major tumor growth inhibition (−97.29% vs. control) but results in greater toxicity. The combination Rapa plus Dox (2.5 mg/kg) showed a tumor inhibition like Rapa plus Dox (5 mg/kg) with a toxicity comparable to Rapa alone. Thus, this study demonstrated the efficacy of this pharmacological approach, providing the rationale for a clinical application of this combinational therapy in “poor-responder” GBM patients.